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Abstract

Basis functions of biquadratic polynomial spline spaces over hierarchical T-meshes are

constructed. The basis functions are all tensor-product B-splines, which are linearly inde-

pendent, nonnegative and complete. To make basis functions more efficient for geometric

modeling, we also give out a new basis with the property of unit partition. Two preliminary

applications are given to demonstrate that the new basis is efficient.
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1. Introduction

NURBS is a basic tool in surface modeling and isogeometric analysis (IGA). However,

NURBS suffer from the weakness that the control points must lie topologically in a tensor-

product mesh. If we want to construct a surface which is flat in the most part of the domain,

but sharp in a small region, we have to use more control points not only in the sharp region,

but also in the flat region to maintain the tensor-product structure. The superfluous control

points are a burden. To overcome this limitation, we need splines which can be refined locally.

This type of splines are defined on T-meshes which allow T-junctions.

Hierarchical B-splines were first introduced in [13], defined on a nest sequence of hierarchical

meshes that can be locally refined, maintain a local tensor product structure and rely on the

principle of B-spline subdivision. The hierarchical structure and the linear independence of

hierarchical B-splines make it appealing for isogeometric analysis [15, 28]. For the partition of

unity, THB-splines were introduced in [14]. However, the completeness of hierarchical B-splines

can not be guaranteed generally.

In 2003, T-splines [20] were proposed. T-splines have been widely used in geometric modeling

[21, 22] and IGA [1, 2, 5, 24]. However, the use of the T-splines in analysis has exhibited a

number of problems that have been addressed by the researchers, such as the linear dependence

of blending functions [4]. Analysis-suitable T-splines were introduced in [16, 17, 23] to deal

with the problem. The linear independence of analysis-suitable T-splines makes it suitable for
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analysis. However, analysis-suitable T-splines are defined on the analysis-suitable T-meshes.

We need to refine more cells to convert a T-mesh to an analysis-suitable T-mesh.

LR B-splines [9] as a collection of hierarchically scaled B-splines are defined on a special

type of T-meshes (LR-meshes). LR B-splines are not always linearly independent although

there exists an algorithm to check whether the spline functions are linearly independent and

convert the spline functions to be linearly independent by inserting more control points.

The splines mentioned above are not defined from the viewpoint of space. Therefore, the

linear independence and completeness are two challenges. In 2006, spline spaces over T-meshes

[6] were put forward by one of the present authors. This type of splines is defined directly from

the viewpoint of spline spaces, dimension formula and basis functions are the main problems.

In [6], each function in S(m,n, α, β,T ) over a T-mesh T is a bi-degree (m,n) polynomial in

each cell of T with smoothness order α and β along two directions. A dimension formula

is given under the condition of m ≥ 2α + 1 and n ≥ 2β + 1. In 2008, polynomial splines

over hierarchical T-meshes (PHT-splines) [7], which usually refer to bicubic C1 polynomial

splines over hierarchical T-meshes, were proposed. PHT-splines have been used efficiently

and adaptively in isogeometric analysis [25–27, 31] and surface modeling [18, 32]. However,

excessive growth of dimension is a challenge in the application of PHT-splines, especially in

three-dimensional space. To deal with this problem, we consider the spline spaces S(m,n,m−
1, n− 1,T ). Unfortunately, [3,19] observed that the dimension of S(m,n,m− 1, n− 1,T ) may

depend on the geometry of the T-mesh. Thus, more attention is paid to some special classes of

T-meshes.

It is noted that [29] gave a general dimension formula of S(m,n,m − 1, n − 1,T ) over a

special T-mesh ((m,n)-subdivided T-mesh). Hierarchical bases of S(m,n,m−1, n−1,T ) over

(m,n)-subdivided T-mesh were constructed in [30]. However, hierarchical bases in [30] did not

have the properties of non-negativity and partition of unity. [34] gave a dimension formula of

S(3, 3, 2, 2,T ) over a more general T-mesh than that in [29], but also a special hierarchical

T-mesh. A basis of S(3, 3, 2, 2,T ) was given in [33] under three rules of refinement of the

hierarchical T-mesh.

In this paper, we give a basis of S(2, 2, 1, 1,T ) based on the topological explanation of

dimension formula in [8]. The basis functions are all tensor-product B-splines, which are lin-

early independent, nonnegative and complete. As unit partition is an important property for

geometry modeling, a new basis with the property of unit partition is given out by an elemen-

tary transformation of the previous basis functions. Compared with spline bases in [30], the

new basis has good properties of nonnegativity, partition of unity, and smaller local support

which may result in a more stable stiffness matrix in numerical solutions of PDE. Also, these

properties will facilitate their applications in geometric modeling. In fact, when representing

a geometric shape with a linear combination of basis functions satisfying these properties, we

can implement local shape control, affine invariance, and variational diminishing. See [11] for

details. In geometric modeling, spline functions with C1 are necessary in some situations.

The remainder of this paper is organized as follows. In Section 2, the spline spaces over

T-meshes are reviewed, and several results from paper [8] are listed. In Section 3, the rule of

refinement is elaborated. Construction of basis functions is discussed in Section 4. Section 5

gives the proof of the linear independence of the basis. In Section 6, a new basis with unit

partition is given. In Section 7, we will present two preliminary applications of the new basis.

We end the paper with conclusions and future work in Section 8.
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2. T-meshes and Spline Spaces

In this section, the concepts of T-meshes, hierarchical T-meshes and the spline spaces over

T-meshes are proposed. The dimension formula of S(2, 2, 1, 1,T ) in [8] is reviewed.

2.1. T-meshes and hierarchical T-meshes

A T-mesh is a rectangular grid that allows T-junctions.

Definition 2.1. ([8]) Suppose T is a set of axis-aligned rectangles and the intersection of any

two distinct rectangles in T is either empty or consists of points on the boundaries of the

rectangles. Then T is called a T-mesh. Furthermore, if the entire domain occupied by T is a

rectangle, T is called a regular T-mesh. If some edges of T also form a T-mesh T ∗, T ∗ is

called a submesh of T .

In this paper, we only consider regular T-meshes. We adopt the definitions of vertex, edge,

and cell provided in [6]. A grid point in a T-mesh is called a vertex of the T-mesh. If a vertex is

on the boundary grid line of the T-mesh, it is called a boundary vertex. Otherwise, it is called

an interior vertex. There are two types of interior vertices: crossing vertices and T-vertices. A

T-vertex is a vertex of one rectangle that lies in the interior of an edge of another rectangle. A

crossing vertex is a vertex of four rectangles. In Fig. 2.1, bi, i = 1, · · · , 10 are boundary vertices,

while vi, i = 1, · · · , 5 are interior vertices. Among the interior vertices, v2 is a crossing vertex

and the others are T-vertices. An l-edge is a line segment that consists of several edges and

whose end points are boundary vertices or T-vertices. It is the longest possible line segment

in the mesh. An l-edge is called a boundary l-edge if it consists of several boundary edges,

otherwise it is called an interior l-edge. Obviously, a regular T-mesh has four boundary l-edges.

In Fig. 2.1, there are five interior l-edges (labeled with dashed lines) and four boundary l-edges

(labeled with solid lines).

v1 v2

v3 v4 v5

b1 b2 b3

b4

b5

b6b7b8

b9

b10

Fig. 2.1. A T-mesh with notations.
Fig. 2.1. A T-mesh T with notations.

A hierarchical T-mesh [7] is a special type of T-mesh that has a natural level structure. A

hierarchical T-mesh is defined in a recursive manner. We generally start from a tensor-product

mesh (level 0) T 0. Then some cells of level k are each divided into 2×2 subcells equally, where

the new cells, the new edges and the new vertices are of level k+1, the resulting mesh is called

T k+1.
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Definition 2.2. ([8]) In forming a hierarchical T-mesh, from level k to level k + 1, if there

exists a cell of level k to be subdivided for which all horizontal and vertical neighboring cells of

level k remain unchanged, the cell is called an isolated subdivided cell. Here, we require that at

least one neighboring cell exists. Furthermore, if an isolated subdivided cell is not a boundary

cell (whose four boundary edges are interior edges of the mesh), the cell is called a non-boundary

isolated subdivided cell.

In Fig. 2.2, the cell bounded by lines in yellow is a non-boundary isolated subdivided cell,

the cell bounded by lines in red is a boundary isolated subdivided cell, the cell bounded by

lines in blue and the cell bounded by lines in green are not isolated subdivided cells.

Given a T-mesh T , the extended T-mesh T ε [8] associated with T is generated as follows:

Produce a tensor-product mesh M with 2(m+1) vertical lines and 2(n+1) horizontal lines, the

central rectangle of which is identical to the region occupied by T , where (m,n) is the bidegree

of the spline space over T . Then extend the edges with one end point on the boundary of T

to the boundary of M .

Given a T-mesh T , By retaining the crossing vertices and the lines with two end points that

are both crossing points and removing other vertices and edges in T , we obtain a new graph

called a crossing-vertex-relationship graph (CVR graph for short) [8] of T . We designate the

CVR graph as G . From the construction of G , we know that G consists of all the line segments

whose two end points are crossing vertices in T and the vertices of G are the crossing vertices

of T . Fig. 2.3 shows an example. In Fig. 2.3, the extended T-mesh T ε is the extension of T

associated with S(2, 2, 1, 1,T ).

Fig. 2.2. Isolated subdivided cells in a T-meshFig. 2.2. Isolated subdivided cells in a T-mesh T .

T T ε G of T ε

Fig. 2.3. A T-mesh with its associated extension and the CVR graph of .Fig. 2.3. A T-mesh T with its associated extension T ε and the CVR graph G of T ε.
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2.2. Spline spaces over T-meshes

Given a T-mesh T , C is used to denote all of the cells in T , and Ω is used to denote the

region occupied by the cells in T . Spline spaces over the T-mesh [6] are defined as follows:

S(m,n, α, β,T ) :=
{
f(x, y) ∈ Cα,β(Ω) : f(x, y)|ϕ ∈ Pmn, ∀ϕ ∈ C

}
, (2.1)

where Pmn is the space of the polynomials with bi-degree (m,n), and Cα,β(Ω) is the space

consisting of all the bivariate functions that are continuous in Ω with order α along the x

direction and with order β along the y direction. Setting (m,n) = (2, 2) and (α, β) = (1, 1), we

obtain the spline space S(2, 2, 1, 1,T ) that is discussed in this paper.

For a given T-mesh T , we define a spline space over the given T-mesh T with homogeneous

boundary conditions (HBC) [8] as follows:

S(m,n, α, β,T ) :=
{
f(x, y) ∈ Cα,β(R2) : f(x, y)|ϕ ∈ Pmn, ∀ϕ ∈ C , and f |R2\Ω ≡ 0

}
. (2.2)

For the dimension formula of S(m,n, α, β,T ) over hierarchical T-mesh T , three theorems

in [8] are listed below.

Theorem 2.1. Given a T-mesh T , assume that T ε is its extension associated with S(2, 2, 1, 1,T )

and that Ω is the region occupied by the cells in T . Then,

S(2, 2, 1, 1,T ) = S(2, 2, 1, 1,T ε)|Ω, (2.3)

dimS(2, 2, 1, 1,T ) = dimS(2, 2, 1, 1,T ε). (2.4)

With Theorem 2.1, to consider the spline space over a T-mesh, we need only to consider

the corresponding spline space with homogeneous boundary conditions over its extended T-

mesh. So we only discuss the construction of the spline space S(2, 2, 1, 1,T ) with homogeneous

boundary conditions in this paper.

Theorem 2.2. Suppose T is a hierarchical T-mesh with V c crossing vertices, E interior l-

edges and δ − 1 isolated subdivided cells. Then,

dimS(2, 2, 1, 1,T ) = V c − E + δ. (2.5)

Theorem 2.3. Given a hierarchical T-mesh T with V c crossing vertices, E interior l-edges

and δ − 1 isolated subdivided cells, suppose there are NG cells in its CVR graph G . It follows

that

V c − E + δ = NG . (2.6)

From Theorems 2.2 and 2.3, we have

Corollary 2.1. Given a hierarchical T-mesh T with NG cells in its CVR graph G . Then

dimS(2, 2, 1, 1,T ) = NG . (2.7)

In the following, we find a basis of the spline space with the help of Corollary 2.1. The

hierarchical T-mesh T we consider is the extension of some T-mesh T
′
, so T is at least a 6

by 6 tensor-product mesh at level 0.
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3. The Rule and Algorithm of Refinement

3.1. The rule of the refinement

A tensor-product B-spline in S(2, 2, 1, 1,T ) is defined on a 4 × 4 tensor-product submesh

whose CVR graph is a 2 × 2 tensor-product mesh. We call the smallest 2 × 2 tensor-product

submesh of G a basic mesh, where the smallest 2 × 2 tensor-product submesh G
′
of G means

that it does not contain other 2 × 2 tensor-product submeshes whose grid lines crossing G
′
.

The domain occupied by the cells in a basic mesh is called a basic domain. We denote the

basic domain corresponding to a tensor-product B-spline f as ϕ(f). In Fig. 3.1, the 2 × 2

tensor-product mesh bounded by red lines is not a basic mesh, because it contains a 2 × 2

tensor-product mesh (bounded by green lines) with grid lines crossing it, the 2 × 2 tensor-

product mesh bounded by blue lines is a basic mesh, because it does not contain any 2 × 2

tensor-product mesh with grid lines crossing it.

Each 4×4 tensor-product submesh of T corresponds to a basic mesh of G , however, a basic

mesh does not necessarily correspond to a 4×4 submesh of T . See Fig. 3.1. For the basic mesh

bounded by dashed lines in G , we can not find its corresponding 4× 4 tensor-product submesh

in T . The reason is that the level-difference of some adjacent cells is greater than 1. In Fig.

3.1, the cell filled with crossed lines is of level 0, while its adjacent cell filled with slashed lines

is of level 2, the level difference of the two cells are 2. We have the following lemma.

T G

Fig. 3.1. A T-mesh with its CVR graph .
Fig. 3.1. A T-mesh T with its CVR graph G .

Lemma 3.1. Given a hierarchical T-mesh T and its CVR graph G , if the level difference of

the adjacent cells is at most one, then each basic mesh of G corresponds to a 4×4 tensor-product

submesh of T .

Proof. To prove this fact, we classify the basic meshes and consider the basic meshes in

the refinement process. For T 0, the fact is obvious. Suppose that the fact is true for T k, we

refine some cells of T k and obtain T k+1. With the restriction of the level difference less than

2, all types of basic meshes and their corresponding 4× 4 tensor-product meshes in T k+1 are

discussed in the following. In Fig. 3.2 and 3.3, the basic meshes are bounded by the dashed

lines and the corresponding 4× 4 tensor-product meshes are bounded by the dotted lines.

1. The basic mesh of G corresponds to a single cell in T k+1. See Fig. 3.2. Here we assume

edges v1v2 and v1v4 are of level k + 1 and edges v5v3 and v3v6 are of level k:

(a) If cell 1 is not refined, the situation is as Fig. 3.2a.

(b) If cell 1 is refined, the situation is as Fig. 3.2b.
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Fig. 3.2. The basic mesh of corresponds to a single cell in .
Fig. 3.2. The basic mesh of G corresponds to a single cell in T k+1.
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Fig. 3.3. The basic mesh of corresponds to two adjacent cells inFig. 3.3. The basic mesh of G corresponds to two adjacent cells in T k+1.

2. The basic mesh of G corresponds to two adjacent cells in T k+1. See Fig. 3.3. Here we

assume the two adjacent cells of T k+1 are vertically adjacent, edges v3v5 and v5v4 are

of level k + 1 and edges v1v6 and v1v2 are of level k. The two adjacent cells which are

horizontally adjacent can be discussed similarly:

(a) If neither of cell 1 and cell 2 are refined, the situation is as Fig. 3.3a.

(b) If cell 1 is refined, cell 2 is not refined, the situation is as Fig. 3.3b.

(c) If cell 2 is refined, cell 1 is not refined, the situation is as Fig. 3.3c.

(d) If cell 1 and cell 2 are both refined, the situation is as Fig. 3.3d.

This completes the proof of the lemma. �
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Fig. 3.4. Refinement algorithm for the rule.

Fig. 3.4. Refinement algorithm for the rule.

Given a hierarchical T-mesh T , to guarantee that all the tensor-product B-splines can span

the spline space, the level difference of the adjacent cells of T cannot be more than one. It

should be noticed that the constraint is proper in scientific computing [10]. Therefore, to find

a basis only consist of tensor-product B-splines, the rule of refinement is : the level difference

of the adjacent cells is at most one. In this paper, we only consider the T-meshes which satisfy

this rule.

3.2. The algorithm of the Refinement

To guarantee that the level difference is at most one, we should refine more cells. See Fig.

3.4. In Fig. 3.4a, If we want to refine cell 3, because neither of cell 1 and cell 2 are divided, we

should refine cell 1 and cell 2 firstly. In Fig. 3.4b, If we want to refine cell 4, because neither of

cell 2 and cell 3 are divided, we should refine cell 2 and cell 3 firstly. If we want to refine cell 2 or

cell 3, because cell 1 is not divided, we should refine cell 1 firstly. Therefore, to refine cell 4, we

should refine cell 1 firstly, then refine cell 2 and cell 3. In the following, we give the algorithm.

Algorithm 3.1 is to find a sequence of cells that should be refined to ensure the rule. We use

the recursion of functions. Algorithm 3.1 is always guaranteed to terminate, because the worst

case is that the final mesh becomes a tensor-product mesh. Algorithm 3.2 is the process of the

refinement of a hierarchical T-mesh.

Algorithm 3.1. Finding a sequence of cells for refining.

Require: A sequence of cells C0 that will be refined

Ensure: A sequence of cells C that should be refined to ensure the rule

function RefineListAt (C0)

Push all elements in C0 to C

for each cell c in C0 do

if c does not satisfies the rule

find out a sequence of cells C1 which should be refined

RefineListAt(C1)

end if

end for

erase the repetitive elements in C

sort elements in C according to levels from low to high

return (C)

end fuction
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Algorithm 3.2. Refinement of a hierarchical T-mesh.

Require: A hierarchical T-mesh T and a tolerance ε

Ensure: A refined hierarchical T-mesh T ′

for each cell c of T do

compute the error e[c]

if e[c] > ε then

push c to a vector C0

end if

end for

C ← RefineListAt (C0)

for each cell c ∈ C do

if c has not been refined then

refine cell c

end if

end for

return T ′

4. Construction of the Basis

In this section, we provide a detailed construction process for the biquadratic hierarchical

basis. We use lev(T ) to represent the top level of a T-mesh T . Suppose lev(T ) = N . In the

refinement process, we use T k to represent the T-mesh of level k. We refine some cells of level

k, the new basis functions are called basis functions of level k + 1.

Two steps are needed for the construction of the basis functions: adding the basis functions

of level k + 1 and deleting some of the basis functions of level k.

4.1. Adding the basis functions of level k + 1

In Fig. 4.1, if we divide the cell bounded by the dashed lines, cells 1-4 (if they exist) will

be influenced.

First, we analyze the CVR graph G
′
of the submesh T

′
bounded by the dashed lines. If

there are new basic meshes in G
′
, we find their corresponding 4× 4 tensor-product submeshes

in T
′
, and add the corresponding tensor-product B-splines to the original basis. Then, we just

need to repeat the process for cells 1-4.

We use lev(f) to represent the level of the basis function f and F 0
i to represent the set

of the basis functions of level i. We denote F 0 =
∪N

i=0 F 0
i , where F 0

0 is the tensor-product

B-spline basis defined on T 0.

Remark 4.1. From Fig. 3.2 and Fig. 3.3, we know that the support of a basis function of

level k can not contain cells of level i, i < k − 1.

4.2. Deleting some of the basis functions of level k

We delete the basis functions of level k if the domain of its basic mesh is covered by the

domains of the basic meshes of some basis functions of level k + 1. Fig. 4.2 is a 4 × 4 tensor-
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1

2

3 4

Fig. 4.1. The construction of the basis function of level k + 1.

product mesh T
′
whose corresponding basic mesh is bounded by dashed lines. We denote the

basis function of level k defined on Fig. 4.2 as f .

There are three situations that ϕ(f) is covered by the domains of the basic meshes of some

basis functions of level k + 1. See Fig. 4.3-4.5, which are three types of CVR graph of the

submesh bounded by dashed lines in Fig. 4.2 after that cell 5 is refined.

1. If cells 1-4 are all refined, the CVR graph is as Fig. 4.3, then the domain of the basic

mesh of level k is covered by four basic meshes of level k + 1.

2. If all of the cells 1-4 are refined, the CVR graph is as Fig. 4.4, then the domain of the

basic mesh of level k is covered by three basic meshes of level k + 1.

3. If cell 3 and cell 4, or cell 1 and cell 2 are refined, the CVR graph is as Fig. 4.5, then the

domain of the basic mesh of level k is covered by two basic meshes of level k + 1.

After deleting, we use Fi to represent the remaining basis functions of level i. The final

basis we obtain is denoted by F =
∪N

i=0 Fi.

1

2

3 45

Fig. 4.2. A tensor-product .Fig. 4.2. A 4× 4 tensor-product T
′
.

Fig. 4.3. The first type of CVR graph.
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a b c d

Fig. 4.4. The second type of CVR graph.
Fig. 4.4. The second type of CVR graph.

a b

Fig. 4.5. The third type of CVR graph.
Fig. 4.5. The third type of CVR graph.

Theorem 4.1. Given a hierarchical T-mesh T , we have

dimS(2, 2, 1, 1,T ) = #F . (4.1)

where #F is the number of the elements in F .

Proof. Suppose G is the CVR graph of T . From Corollary 2.1, we know that dimS(2, 2, 1, 1,

T ) = NG , where NG is the number of cells in the CVR graph G of T . With the restriction

that the level difference of the adjacent cells is at most one, the number of cells in G equals the

number of the basic meshes. Because each tensor-product B-spline basis function corresponds

to a basic mesh, the theorem is proved. �

4.3. An example

We give an example to illustrate the process of the basis construction. We useN [x1, x2, x3, x4]

(x) to denote the quadratic B-spline basis function associated with the knot vector [x1, x2, x3, x4]

in x-direction, N [y1, y2, y3, y4](y) to denote the quadratic B-spline basis function associated with

the knot vector [y1, y2, y3, y4] in y-direction.
In Fig. 4.6, we use Mi to denote the domain occupied by the cells of the basic mesh, fk

i

to denote the basis function of level k whose corresponding basic domain is labeled with Mi.
T 0 is the initial mesh and G 0 is its CVR graph. There are 9 basic meshes in G 0. Therefore,
#F 0

0 = 9. The basis functions are:

f0
1 = N [0, 1, 2, 3](x)N [2, 3, 4, 5](y), f0

2 = N [0, 1, 2, 3](x)N [1, 2, 3, 4](y), f0
3 = N [0, 1, 2, 3](x)N [0, 1, 2, 3](y),

f0
4 = N [1, 2, 3, 4](x)N [2, 3, 4, 5](y), f0

5 = N [1, 2, 3, 4](x)N [1, 2, 3, 4](y), f0
6 = N [1, 2, 3, 4](x)N [0, 1, 2, 3](y),

f0
7 = N [2, 3, 4, 5](x)N [2, 3, 4, 5](y), f0

8 = N [2, 3, 4, 5](x)N [1, 2, 3, 4](y), f0
9 = N [2, 3, 4, 5](x)N [0, 1, 2, 3](y).

Now we refine some cells of level 0 and obtain a new mesh T 1 whose CVR graph is C 1. Six
new basic meshes appear in C 1. Therefore, #F 0

1 = 6. The six basis functions are:
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f1
10 = N [0, 0.5, 1, 1.5](x)N [1.5, 2, 2.5, 3](y), f1

11 = N [0, 0.5, 1, 1.5](x)N [1, 1.5, 2, 2.5](y),

f1
12 = N [0.5, 1, 1.5, 2](x)N [1.5, 2, 2.5, 3](y), f1

13 = N [0.5, 1, 1.5, 2](x)N [1, 1.5, 2, 2.5](y),

f1
14 = N [0, 1, 2, 3](x)N [2, 2.5, 3, 4](y), f1

15 = N [1, 1.5, 2, 3](x)N [1, 2, 2.5, 3](y).

As the domain of basic meshM2 is covered by the basic meshesM12, M14 andM15, f
0
2 will be

deleted. Finally, we have F0 = {f0
1 , f

0
3 , f

0
4 , f

0
5 , f

0
6 , f

0
7 , f

0
8 , f

0
9 }, F1 = {f1

10, f
1
11, f

1
12, f

1
13, f

1
14, f

1
15}.

The basis over the T-mesh T is F = {f0
1 , f

0
3 , f

0
4 , f

0
5 , f

0
6 , f

0
7 , f

0
8 , f

0
9 , f

1
10, f

1
11, f

1
12, f

1
13, f

1
14, f

1
15}.

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

T 0 T 1

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

G 0 G 1

Fig. 4.6. An example for the basis construction.
Fig. 4.6. An example for the basis construction.

5. Properties

In this part, we discuss some properties of the basis constructed in Section 4. The support

set of any function f is defined as supp(f) = {(x, y) ∈ Ω : f(x, y) ̸= 0}, where Ω is the domain

occupied by the cells of the T-mesh T .

5.1. Linear independence

We give three lemmas about the basis firstly.

Lemma 5.1. For two basis functions f1 and f2, suppose T1 and T2 are the tensor-product

meshes which f1 and f2 are defined on, respectively. In Fig. 5.1, T1 and T2 are bounded by

solid lines and dashed lines, respectively. The points A1, A2, A3 and A4 are the four corner

points of T1. If supp(f1) ∩ supp(f2) ̸= ∅, supp(f1) * supp(f2) and supp(f2) * supp(f1), then

Ai can not be the corner point of T2, where i = 1, 2, 3, 4.
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Proof. This lemma can be proved by checking all types of the basis functions in Fig. 3.2

and Fig. 3.3. If lev(f2) > lev(f1), suppose A1 is also the corner point of T2. Then, supp(f2) ⊆
supp(f1), a contradiction. Conversely, if lev(f2) < lev(f1), then supp(f1) ⊆ supp(f2), also a

contradiction.

If lev(f1) = lev(f2), this conclusion is also correct. We omit the proof here. �

A1

A2A3

A3

Fig. 5.1. Figure for lemma 5.1.
Fig. 5.1. Figure for lemma 5.1.

Lemma 5.2. Suppose F0
k = {f1, f2, . . . , fm}. For any basis function f of level k + 1, there

exists an i, i ∈ {1, 2, . . . ,m}, such that supp(f) ⊆ supp(fi).

Proof. We should check this conclusion for all types of the basis functions in Fig. 3.2 and

Fig. 3.3. Here, we only check this lemma for the basis functions in Fig. 3.2.a. The others can

be verified similarly.

For Fig. 3.2.a, the set supp(f) consist of four cells of level k which have been illustrated in

Fig. 5.2, here we suppose the edges labeled with dashed lines are not boundary edges of the

T-mesh T . Each cell of level k must be from a cell of level k − 1. Therefore, cells 1-4 can be

from four different cells of level k− 1, or two of them are from a same cell of level k− 1, or cells

1-4 are from a same cell of level k − 1. The three situations are as follow:

1. If cells 1-4 are from four different cells of level k−1, the situation is as Fig. 5.3, where the

four cells of level k− 1 are bounded with dashed lines. The four tensor-product B-splines

defined on the mesh in Fig. 5.3 are all basis functions of level k that we are looking for.

2. If two of cells 1-4 are from the same cell of level k − 1, the situation is as Fig. 5.4, where

cell 5 may be divided or not.

(a) Cell 1 and cell 3 are from a same cell of level k − 1, and cell 2 and cell 4 are from a

same cell of level k − 1, the situation is as Fig. 5.4a. The tensor-product B-splines

defined on the mesh in Fig. 5.4a whose support contains cells 1-4 are the basis

functions of level k we are looking for.

(b) Cell 1 and cell 2 are from a same cell of level k − 1, and cell 3 and cell 4 are from a

same cell of level k − 1, the situation is as Fig. 5.4b. The tensor-product B-splines

defined on the mesh in Fig. 5.4b whose support contains cells 1-4 are the basis

functions of level k we are looking for.

3. Cells 1-4 are from a same cell of level k− 1, the situation is as Fig. 5.5, where cell 5 may

be divided or not. The tensor-product B-splines defined on the mesh in Fig. 5.5 whose

support contains cells 1-4 are the basis functions of level k we are looking for.
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1

2

3

4

Fig. 5.2. Four cells of levelFig. 5.2. Four cells of level k.

1

2

3

4

Fig. 5.3. The cells 1-4 are from four different cells of levelFig. 5.3. The cells 1-4 are from four different cells of level k − 1.

1

2

3

4
5

1

2

3

4

5

Fig. 5.4. Two of the cells 1-4 are from a same cell of level .Fig. 5.4. Two of the cells 1-4 are from a same cell of level k − 1.

1

2

3

4

5

Fig. 5.5. The cells 1-4 are from a same cell of levelFig. 5.5. The cells 1-4 are from a same cell of level k − 1.

For Fig. 3.2b, we can prove similarly. �

For a basis function f of level k + 1, suppose f1 is a basis function in F 0
i , i < k + 1, whose

support set contains the support set of f , then we call f1 a mother function of f . We use

moti(f) to denote one of the mother functions of level i without distinction.

Lemma 5.3. Suppose f ∈ Fk, f is defined on a 4 × 4 tensor-product mesh whose center cell

is denoted as cell C, f1, f2, . . . , fm are all of the basis functions of level k + 1 whose support

set is a subset of supp(f). If supp(f)/
∪m

i=1 supp(fi) = ∅, then cell C cannot be divided and

f, f1, f2, · · · , fm are linearly independent over cell C.
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Proof. We prove this lemma by checking all types of basis functions in Fig. 3.2 and Fig.

3.3.

For Fig. 3.2.a and Fig. 3.3, the support set of each basis function contains cells of level k

which can not be occupied by the support set of basis functions of level k + 1.

In the following, we consider the basis functions in Fig. 3.2.b. Suppose

f = N [x0, x2, x4, x6](x)N [y0, y2, y4, y6] (y)

is defined on the mesh in Fig. 5.6, the basic mesh corresponding to f is bounded by the dashed

lines. We prove this lemma by considering the following two cases.

1. The cell bounded by the dashed lines in Fig. 5.6 is divided.

From Section 4.2, we know ϕ(f)/
∪m

i=1 ϕ(fi) ̸= ∅. Therefore, cell 2 and cell 4, or cell 2

and cell 6, or cell 4 and cell 8, or cell 6 and cell 8 cannot be refined (otherwise, f will be

deleted according to Section 4.2). We suppose cell 6 and cell 8 are not refined. Then we

have a fact: the domain of cell 9 cannot be occupied by
∪m

i=1 supp(fi) (if fi exists). We

use Fig. 5.7 as an example to verify the fact, other situations can be verified similarly.

In Fig. 5.7, there is a new basis of level k + 1, which is denoted as f1. The domain of

supp(f) is bounded by the dotted lines. Therefore, the fact is true.

2. The cell bounded by the dashed lines in Fig. 5.6 is not divided, that is the center cell C

of supp(f) is not divided.

There is only one case such that supp(f)/
∪m

i=1 fi = ∅, see Fig. 5.8. In Fig. 5.8, there

are eight basis functions of level k + 1. We denote the domains occupied by their basic

meshes as Mi, i = 1, 2, · · · , 8, and the corresponding basis function as fi, i = 1, 2, · · · , 8.

f1 = N [x0, x1, x2, x4](x)[y2, y4, y5, y6](y), f2 = N [x1, x2, x4, x5](x)[y2, y4, y5, y6](y),

f3 = N [x2, x4, x5, x6](x)[y2, y4, y5, y6](y), f4 = N [x0, x1, x2, x4](x)[y1, y2, y4, y5](y),

f5 = N [x2, x4, x5, x6](x)[y1, y2, y4, y5](y), f6 = N [x0, x1, x2, x4](x)[y0, y1, y2, y4](y),

f7 = N [x1, x2, x4, x5](x)[y0, y1, y2, y4](y), f8 = N [x2, x4, x5, x6](x)[y0, y1, y2, y4](y).

We denote f̄ = N [x1, x2, x4, x5](x)[y1, y2, y4, y5](y),

α0 =
x1 − x0

x4 − x0
, α1 =

x6 − x5

x6 − x2
, β0 =

y1 − y0
y4 − y0

, β1 =
y6 − y5
y6 − y2

.

Then we have

f = α0β1f1 + β1f2 + α1β1f3 + α0f4 + α1f5 + α0β0f6 + β0f7 + α1β0f8 + f̄ . (5.1)

Because f1, f2, · · · , f8 and f̄ are the tensor-product B-splines defined on the tensor-

product mesh with knot vectors [x0, x1, x2, x4, x5, x6]× [y0, y1, y2, y4, y5, y6], f1, f2, · · · , f8
and f̄ are linearly independent on cell C.

From (5.1), we have
f1
f2
...

fm
f

 =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 1 0

α0β1 β1 α1β1 α0 α1 α0β0 β0 α1β0 1




f1
f2
...

fm
f̄

 . (5.2)
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Because the coefficient matrix in (5.2) is a lower triangular matrix with diagonal elements

all 1, it is full rank. Therefore, f, f1, f2, · · · , f8 are linearly independent on cell C, which

proves the lemma. �

1

2

3

4

C

6

7

8

9

x0 x2 x4 x6

y0

y2

y4

y6

Fig. 5.6. The tensor-product mesh which corresponds toFig. 5.6. The 4× 4 tensor-product mesh which corresponds to f .

x0 x2 x4 x6

y0

y2

y4

y6

The mesh The CVR graph

Fig. 5.7. The mesh and the CVR graph after that cell 2, cell 4 and cell 5 in Fig. 5.6 are refined.
Fig. 5.7. The mesh and the CVR graph after that cell 2, cell 4 and cell 5 in Fig. 5.6 are refined.

x0 x2 x4 x6x3 x5

y0

y2

y4

y6

y3

y5
M1 M2 M3

M4 M5

M6 M7 M8

The mesh The CVR graph

Fig. 5.8. The mesh and the CVR graph after that cells 1-4 and cells 6-9 in Fig. 5.6 are refined .
Fig. 5.8. The mesh and the CVR graph after that cells 1-4 and cells 6-9 in Fig. 5.6 are refined.
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Theorem 5.1. The functions in F are linearly independent.

Proof. Suppose F0
0 = {f1, f2, . . . , fm, fm+1, . . . , fn},F0 = {f1, f2, . . . , fm}, and lev(T ) =

N .

For any function f at level k, k ≥ 1 , from lemma 5.2, we know that supp(f) is a subset of

the support sets of some functions at level 0.

Suppose ∑
f∈F

c(f)f = 0, c(f) ∈ R. (5.3)

To prove the theorem, we just need to prove c(f) = 0 for all the f ∈ F .
Let

gi =

c(fi)fi +
∑N

k=1

∑
f∈Fk,mot0(f)=fi

c(f)f, 1 6 i 6 m,∑N
k=1

∑
f∈Fk,mot0(f)=fi

c(f)f, m+ 1 6 i 6 n.

(5.3) becomes
n∑

i=1

gi = 0. (5.4)

From the definition, we know supp(gi) = supp(fi). Consider the bottom-left cell α of the

mesh T . Here “bottom-left” means that there is no cell whose bottom edge is below α, and

among the cells whose bottom edges are in the same horizontal line as α, α is the leftmost

cell. From lemma 5.1, there is only one function fj ∈ F0
0 satisfying α ∈ supp(fj), namely

α ∈ supp(gj). Therefore, gj is the only non-zero function on α. By (5.4), we obtain gj = 0.

Excluding gj from (5.4), we consider the bottom-left cell of the region given by T \α. Also

from lemma 5.1, there is only one function of gk, k ̸= j that can be non-zero on this cell, and it

is zero. Continuing this argument, we obtain gl = 0 for all 1 6 l 6 n.

For each gi = 1, 2, · · · ,m, we consider fi in the following two cases.

1. supp(fi)/
∪

f∈F1,mot0(f)=fi
supp(f) ̸= ∅.

From the definition, we know that
∪

f∈Fk+1,mot0(f)=fi
supp(f) ⊆

∪
f∈Fk,mot0(f)=fi

supp(f),

then we have

supp(fi)/
N∪

k=1

∪
f∈Fk,mot0(f)=fi

supp(f) ̸= ∅.

Because gi = 0, we obtain c(fi) = 0.

2. supp(fi)/
∪

f∈F1,mot0(f)=fi
supp(f) = ∅.

Suppose fi is defined on a 4 × 4 tensor-product mesh with center cell C. With Lemma

5.3, we know cell C is a cell of level 0 that is not divided. With Remark 4.1, we know that

the support sets of the basis functions of level k, k > 1 can not contain cell C. Therefore,

we have
N∑

k=2

∑
f∈Fk,mot0(f)=fi

c(f)f = 0

on cell C. Because gi = 0, we obtain

c(fi)fi +
∑

f∈F1,mot0(f)=fi

c(f)f = 0
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on cell C. With Lemma 5.3, we obtain c(fi) = 0.

Now each gi becomes:

gi =
N∑

k=1

∑
f∈Fk,mot0(f)=fi

c(f)f.

We can repeat the discussion on every gi, and obtain c(f) = 0 for f ∈ F1.

Continuing this process, we prove this theorem. �

5.2. Other properties

The basis functions are all tensor-product B-splines, so they inherit some properties, such

as nonnegativity and local support. From Theorem 4.1 and the linear independence, we know

they are complete. Therefore, F is a basis of S(2, 2, 1, 1,T ).

6. A New Basis with Unit Partition

First, we give the definition of unit partition.

Definition 6.1. Given a basis F = {g1, g2, · · · , gn} with homogeneous boundary condition

defined on T which is an extension of a T-mesh T
′
. If

∑n
i=1 gi = 1 on Ω, where Ω is the

domain occupied by the cells in T
′
, then we call the basis F has the property of unit partition.

Unit partition is an important property in geometry modeling [11]. However, the basis

F constructed in Section 4 does not have this property. In this part, we give a new basis

satisfying this property, which is just an elementary transformation of the basis F . The new

basis functions are represented as the Bernstein basis.

For the initial tensor-product T-mesh T 0, it is obvious that F 0
0 has the property of unit

partition. To ensure the property of unit partition, we need to keep the sum of the basis

functions same from level k to level k + 1. Now we modify Fk and F 0
k+1 as follow:

1. For a function f ∈ Fk, we use

f̄ = f −
∑

f1∈F0
k+1,motk(f1)=f

α(f, f1)f1 (6.1)

instead of f as the new function, where the coefficient α(f, f1) is computed using Algo-

rithm 5.1. We denote the set {f̄ , f ∈ Fk} as F̄k.

2. For a function f1 ∈ F 0
k+1, we use

f̄1 =
∑

f∈F0
k ,mot(f1)=f

α(f, f1)f1 (6.2)

instead of f1 as the new function, where the coefficient α(f, f1) computed using Algorithm

5.1. We denote the set {f̄1, f1 ∈ F 0
k+1} as F̄ 0

k+1.

The final modified basis is denoted by F̄ = (
∪N−1

k=0 F̄k)
∪

F̄ 0
N , where N = lev(T ).
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Remark 6.1. For a function f in F̄k, supp(f) ̸= ∅. This follows from Lemma 5.3.

We call the coefficient α(f, f1) the basic coefficient. In the following section, we will give the

algorithm to compute the basic coefficients.

6.1. Algorithm for the computation of the basic coefficients

First, we give a lemma without proof.

Lemma 6.1. Given a polynomial f(x, y) which is in the form of the Bernstein basis. If the

Bezier ordinates in each cell of supp(f) are all nonegative, then the polynomial f(x, y) ≥ 0.

Suppose f1 ∈ F 0
k+1 whose support set is a subset of supp(f). In Algorithm 5.1, we find a

coefficient α such that all the Bezier ordinates of f −αf1 are nonegative. With Lemma 6.1, we

have f − αf1 ≥ 0.

Algorithm 6.1. Computation of the basic coefficient.

Require: A function f1 ∈ F 0
k+1 whose support set is a subset of supp(f), the Bezier

ordinates in each cell of supp(f1) and supp(f) are all nonegative

Ensure: A coefficient α satisfies that f − αf1 ≥ 0

function COMPUTECOEFF f, f1
M ← the biggest number in the computer

α←M

for each cell c in both supp(f) and supp(f1) do

for each Bezier ordinate b ̸= 0 of f and b1 of f1 in cell c do

if b1 = 0 then

β ←M

else

β ← b/b1
end if

if α > β then

α← β

end if

end for

if the Bezier ordinates in c are all zeros

delete c from supp(f)

end if

end for

end fuction

6.2. Algorithm for the construction of the new basis

Algorithm 6.2 is simple process of the construction of the new basis. The new basis is

computed level by level. The basis functions in F 0
k /Fk will be modified to zeros, this follows

Section 4.2. Therefore, F̃k = F̄k, F̃ 0
k+1 = F̄ 0

k+1, and F̃ = F̄ in Algorithm 6.2.
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Algorithm 6.2. A new basis.

Require: The basis F constructed in Section 4

Ensure: A new basis F̃

N ← lev(T )

F̃ 0
0 ← F 0

0

for level k from 1 to N do

for each basis function f1 ∈ F 0
k+1

g ← 0

for each function f ∈ F̃ 0
k and mot(f1) = f

α← COMPUTECOEFF f, f1
f ← f − αf1
g ← g + αf1
f1 ← g

end for

Push f1 to F̃ 0
k+1

end for

F̃k = {f, f ∈ F̃ 0
k and supp(f) ̸= ∅ }

end for

F̃ =
∪N−1

i=1 F̃k

∪
F̃ 0

N

return F̃

6.3. Properties of the new basis

In this section, we use three theorems to give out the properties of unity partition, nonega-

tivity and linear independence of the functions in F̄ .

Theorem 6.1. The functions in F̄ have the property of unit partition.

Proof. We prove this theorem level by level. For the initial T-mesh T0 which is a tensor-
product mesh, F̄ 0

0 = F 0
0 is a set of tensor-product B-splines that has the property of unit

partition. Suppose the new basis F̄
′
defined over Tk also has the property of unit partition,

F̄ is the new basis defined over Tk+1. With (6.1) and (6.2), we have

∑
f̄∈F̄

f̄ =

k−1∑
i=1

∑
f̄∈F̄i

f̄ +
∑

f̄∈F̄k

f̄ +
∑

f̄1∈F̄0
k+1

f̄1

=

k−1∑
i=1

∑
f̄∈F̄i

f̄ +
∑

f∈F̄0
k

(
f −

∑
f1∈F0

k+1
,motk(f1)=f

α(f1, f)f1

)
+

∑
f1∈F0

k+1

( ∑
f∈F̄0

k
,motk(f1)=f

α(f1, f)

)
f1

=

k−1∑
i=1

∑
f̄∈F̄i

f̄ +
∑

f∈F̄0
k

(
f −

∑
f1∈F0

k+1
,motk(f1)=f

α(f1, f)f1

)
+
∑

f∈F̄0
k

( ∑
f1∈F0

k+1
,motk(f1)=f

α(f1, f)f1

)

=

k−1∑
i=1

∑
f̄∈F̄i

f̄ +
∑

f∈F̄0
k

f =
∑

f∈ ¯
F

′

f = 1. (6.3)

Theorem 6.2. The functions in F̄ are all nonegativity.
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Proof. We prove this theorem by checking the function f̄ in (6.1) and the function f̄1 in

(6.2).

1. Prove the function f̄ ≥ 0 in (6.1).

In Algorithm 5.1, α is the biggest scale such that b − αb1 ≥ 0 for each Bezier ordinate

b of f and b1 of f1 in the common cells of supp(f) and supp(f1). With Lemma 6.1, we

know that f − αf1 ≥ 0. Therefore, the function f̄ in (6.1) is nonegative.

2. Prove the function f̄1 ≥ 0 in (6.2).

Because all the Bezier ordinates of f and f1 in Algorithm 5.1 are nonegative, we have

α ≥ 0. Therefore, f̄1 in (6.2) is nonegative. �

Theorem 6.3. The functions in F̄ are linearly independent.

Proof. We sort the functions in F̄ according to their levels from low level to high level. From

(6.1) and (6.2), we know that the transformation from F to F̄ is an elementary transformation,

and the transformation matrix is an upper triangular matrix which satisfies that the diagonal

elements are nonzeros. With Theorem 5.1, the functions in F̄ are also linearly independent.�

6.4. Remark

In this part, we give some remarks about the basis F̄ .

Remark 1. The basis functions in F̄ may not be tensor-product B-splines, and the supports

of the basis functions are connected which can be concave.

In Section 4.3, suppose F̄0 = {f̄0
1 , f̄

0
3 , f̄

0
4 , f̄

0
5 , f̄

0
6 , f̄

0
7 , f̄

0
8 , f̄

0
9 }. The support sets of f1

10, f
1
11, f

1
12, f

1
13

and f1
15 are subsets of supp(f0

3 ). With Algorithm 6.2, we have

f̄0
3 = f0

3 −
1

16
f1
10 −

9

48
f1
11 −

3

16
f1
12 −

9

16
f1
13 −

3

16
f1
15

=
3

4
N [0, 1, 2, 3](x)N [0, 1, 1.5, 2](y) +

1

2
N [1, 1.5, 2, 3](x)N [1, 1.5, 2, 2.5](y). (6.4)

f̄0
3 is no longer a tensor-product B-spline, and the support set of f̄0

3 is bounded by the dashed

lines, which is concave and connected. By considering all the types of basis functions in Fig.

3.2 and Fig. 3.3, we can prove the supports of the basis functions in F̄ are connected. We omit

the proof here.

Remark 2. The basis functions in F̄ are not locally linearly independent.

In Fig. 6.1, the domain occupied by the cells in each basic mesh is denoted as 1, 2, · · · , 11,
we use fk

i to denote the basis function of level k whose corresponding basic domain is labeled

with i, then

F = {f0
1 , f

1
2 , f

1
3 , · · · , f1

7 , f
2
8 , f

2
9 , f

2
10, f

2
11}.

After running Algorithm 6.2, the new basis functions

F̄ = {f̄0
1 , f̄

1
2 , f̄

1
3 , · · · , f̄1

7 , f̄
2
8 , f̄

2
9 ,

¯f2
10,

¯f2
11},

where all the supports of basis functions in F̄ except f̄1
2 contain the domain bounded by red

lines, that is, there are 10 basis functions in F̄ are nonzeros over the domain bounded by red
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Fig. 6.1. An example which is used to show the basis functions in are not locally linearly independent.
Fig. 6.1. An example which is used to show the basis functions in F̄ are not locally linearly independent.
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Fig. 6.2. Greville points of the basis F̄ .

lines. Because the dimension of biquadratic polynomial space is 9, {f̄0
1 , f̄

1
3 , · · · , f̄1

7 , f̄
2
8 , f̄

2
9 ,

¯f2
10,

¯f2
11}

are linearly dependent over the domain bounded by red lines. Therefore, the basis functions in

F̄ are not locally linearly independent.

Remark 3. A conjecture about the Greville points of the basis F̄ .

With the process of the basis construction, each basis function in F̄ corresponds to a basic

mesh which is a 2× 2 tensor-product mesh. We conjecture that the center points of the basic

meshes can be seen as Greville points. However, we do not know whether the center points

combined with control points can give rise to genuine ”control points” that have some good

properties, such as the convex hull. Fig. 6.2 is an example, where the points label with “◦” are

the center points of the basic meshes of level 0, and the points label with “•” are the center

points of the basic meshes of level 1. The dimension of the splice space defined on Fig. 6.2 is

18.
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7. Applications

In this section, we give some numerical applications using the basis constructed in Section

6.

7.1. Isogeometric analysis

In this part, we present two numerical examples in isogeometric analysis. The splines we

used to compare are biquadratic tensor-product B-splines defined on uniform tensor-product

meshes and splines in [30]. Both examples show that to reach a given accuracy, few degrees of

freedom are needed using spline bases in this paper than using the biquadratic tensor-product

B-splines defined on uniform tensor-product meshes. Furthermore, compared with spline bases

in [30], smaller conditional number of stiffness matrix achieved with spline bases in this paper.

7.1.1. Stationary heat conduction: L-domain

In this part, we try to solve the heat conduction equation with isogeometric analysis. The

geometry of the domain is illustrated in Fig. 7.1a, where Ω = [−1, 1]× [−1, 1]\[0, 1]× [0, 1]. The

heat conduction equation is −∆u = 0 in Ω with a homogeneous condition on ΓD, and Neumann

boundary condition ∂u
∂n = ∂f

∂n on ΓN, where n is outer normal direction, u is an exact solution

of the problem and is given here for reference.

f =

(x2 + y2)
1
3 sin ((2θ − π)/3), (x, y) ̸= (0, 0),

0, (x, y) = (0, 0),

where

θ =


arccos(x/r), x ≤ 0 and y ≥ 0,

π − arcsin(y/r), x ≤ 0 and y ≤ 0,

2π + arcsin(y/r), x ≥ 0 and y ≤ 0.

The exact solution is depicted in Fig. 7.1b. Fig. 7.2 shows the adaptive hierarchical T-

meshes after 1, 6, 8, 10 refinements. Fig. 7.3 shows the relative error (uexact − uh)/∥uexact∥L2

ΓN

ΓN

ΓN

ΓN

ΓD

ΓD

-1 0 1

-1

0

1

a b

Fig. 7.1. Figure a is the setup of the stationary heat conduction, and figure b is the exact solution.
Fig. 7.1. Figure a is the setup of the stationary heat conduction, and figure b is the exact solution.
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a b

c d

Fig. 7.2. Meshes after 1, 6, 8, 10 refinements.

Fig. 7.3. Relative error after 10 refinements.

between the exact solution and the numerical solution associated with the mesh in Fig.7.2c. As

the real solution is singular at the origin coordinate, the relative error is larger around the origin

coordinate. In Table 7.1, we show the iteration number (n), dimension of spline space, condition

number of the stiffness matrix and the error ∥uexact − uh∥L2/∥uexact∥L2 for spline bases in this

paper, B-splines over uniform tensor-product meshes and spline bases in [30]. Table 7.1 and

Fig. 7.4 show that to reach a given tolerance, much fewer degrees of freedom are needed using
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Table 7.1: Electron affinity (A), Ionization potential (I), Absolute electroneagativity (χ), Global hard-

ness (η) and Electrophilicity (ω) for monomer and dimers.

Table 1

n dim cond error

Spline bases in this paper

1 16 1.74620× 101 4.20730× 10−2

2 36 5.18941× 101 9.11038× 10−3

6 80 2.17625× 102 1.40437× 10−3

8 136 3.04984× 102 6.06022× 10−4

10 238 7.34754× 102 1.87078× 10−4

B-splines over uniform tensor-product meshes

1 16 1.74620× 101 4.20730× 10−2

2 36 5.18941× 101 9.11038× 10−3

3 100 2.28387× 102 1.95270× 10−3

4 324 1.00870× 103 4.00000× 10−4

5 1156 2.25850× 103 1.58000× 10−4

Spline bases in [30]

1 16 1.74620× 101 4.20730× 10−2

2 39 4.767792× 102 8.7421× 10−3

7 81 5.43440× 103 2.84351× 10−3

12 143 1.62280× 104 5.53105× 10−4

15 238 7.57250× 104 3.74046× 10−4

the adaptive refinement in this paper than the uniform refinement with biquadratic B-splines.

Fig. 7.5 shows that a smaller conditional number obtained using spline bases in this paper than

using spline bases in [30] under a given dimension.

Fig. 7.4. Comparison of the convergence results with spline bases in this paper and uniform refinement.

7.1.2. A two-dimensional elliptic problem defined on [0, 1]× [0, 1]

In this part, we try to solve a two-dimensional elliptic boundary value problem (BVP)

−∆u = f, (x, y)ϵ[0, 1]2

with homogeneous conditions. Here f = −{104[(2x− 1)2(y2 − y)2 + (x2 − x)2(2y − 1)2] + 2×
102(y2 − y + x2 − x)}e102(x2−x)(y2−y).
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Fig. 7.5. Comparison of condition numbers with spline bases in this paper and spline bases in paper [30].

The exact solution is depicted in Fig. 7.6. Fig. 7.7a shows the relative error (uexact −
uh)/∥uexact∥L2 between the real solution and the numerical solution after 3 refinements. Fig.7.7b

shows the adaptive hierarchical T-meshes after 14 refinements. In Table 7.2 we show the itera-

tion number (n), dimension of spline space, condition number, the error ∥uexact−uh∥L2/∥uexact∥L2

Fig. 7.6. The exact solution.

a b

Fig. 7.7. The relative error after 3 refinements (left) and the mesh after 14 refinement (right).
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Table 7.2: Electron affinity (A), Ionization potential (I), Absolute electroneagativity (χ), Global hard-

ness (η) and Electrophilicity (ω) for monomer and dimers.

Table 2

n dim cond error

Spline bases in this paper

1 16 4.97740× 100 5.97478× 10−1

3 40 6.41250× 100 5.1276× 10−2

4 72 8.56920× 100 1.55392× 10−2

7 180 2.27106× 101 1.65848× 10−3

14 496 8.23124× 101 1.87078× 10−4

B-splines over uniform tensor-product meshes

1 16 4.97740× 100 5.97478× 10−1

2 36 5.0076× 100 2.35584× 10−1

3 100 6.8156× 100 1.42389× 10−2

4 324 2.43688× 101 1.09188× 10−3

5 1156 9.55392× 101 1.19142× 10−4

Spline bases in [30]

1 16 4.97740× 100 5.97478× 10−1

3 40 5.631579× 102 5.14273× 10−2

4 72 1.18040× 103 1.61176× 10−2

10 194 3.81900× 104 2.02471× 10−3

20 512 8.19940× 104 3.59690× 10−4

for splines bases in this paper, B-splines over uniform tensor-product meshes and spline bases

in [30]. Table 7.2 and Fig. 7.8 show that the adaptive refinement in this paper reaches a given

tolerance with fewer degrees of freedom than the uniform refinement with biquadratic B-splines

over tensor-product meshes. Fig. 7.9 shows that a smaller conditional number achieved using

spline bases in this paper than using spline bases in [30] under a given dimension.

Fig. 7.8. Comparison of the convergence results with spline bases in this paper and uniform refinement.

7.2. Surface fitting

Given an open surface triangulation with vertices Vj , j = 1, · · · , N in 3D space, the corre-

sponding parameter values (xj , yj), j = 1, · · · , N are obtained using the method of conformal

parametrization in [12], and the parameter domain is assumed to be [0, 1]× [0, 1].
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Fig. 7.9. Comparison of condition numbers with spline bases in this paper and spline bases in paper [30].

To construct a spline to fit the given surface, we need only to compute all the control

points Pi, i = 1, · · · ,m associated with all the basis functions bi, i = 1, · · · ,m. We denote the

fitting spline
∑m

i=1 Pibi(x, y) as S(x, y). To find the control points, we just need to solve an

over-determined linear system S(xj , yj) = V (xj , yj), j = 1, · · · , N using the least square fitting.

The surface fitting scheme repeats the following two steps until the fitting error in each cell

is less than the given tolerance ε:

1. Compute all the control points for all the basis functions.

2. Find all the cells whose errors are greater than the given error tolerance ε, then subdivide

these cells into four subcells to form a new mesh, and construct basis functions for the new

mesh. We use max(x,y)∈C ∥V (x, y)−S(x, y)∥ to define the fitting error over cell C . In practice,

the fitting error is calculated as the maximum of ∥V (uj , vj) − S(uj , vj)∥ for certain sample

points (uj , vj) in C .

Fig. 7.10 is provided to illustrate the above surface fitting scheme.

Original model Result surface Surface with T-mesh
Fig. 7.10. Fitting female head with polynomial splines over a hierarchical T-mesh.

8. Conclusions and Future Studies

Under the rule that the level-difference of the adjacent cells is at most one, a basis of the

biquadratic polynomial spline spaces is constructed based on the CVR graphs. The functions

in the basis are all tensor-product B-splines, and they have the properties of nonnegativity

and local support. However, the basis does not have the property of unit partition. To make

the basis functions more efficient for geometric modeling, we also give out a basis with unit

partition.
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In this paper, we restrict that the level-difference of adjacent cells is one at most, in the future

we will discuss the construction of spline spaces with weaker constraint of the level-difference.

For S(2, 2, 1, 1,T ), the dimension equals to the number of cells in the corresponding CVR

graph of T . For spline spaces S(m,n,m− 1, n− 1,T ), in [8] a conjecture was provided, which

states that the dimensions of spline spaces over hierarchical T-meshes equal to the dimensions of

lower-degree spline spaces over the corresponding CVR-graph. Now we are working on proving

this conjecture for bicubic spline spaces, and defining their basis functions according to the

structure of CVR graph as well.
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