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Abstract

High-attenuation object-induced streaking and shadow artifacts in computerized to-

mography (CT) are somewhat connected to the misfit of the X-ray projection data to the

range space of the Radon transform. This misfit is mainly due to the beam hardening

factor of the projection data which is unavoidable for polychromatic sources. The major

difficulty in dealing with the beam hardening-induced streaking and shadow artifacts comes

from its highly nonlinear nature depending on geometries of high attenuation objects. In

this work, we investigate the mathematical characteristics of those streaking and shadow

artifacts from the structure of the projection data. We also proposed a metal artifacts

reduction method by incorporating the recent technique of the nonlinear beam-hardening

corrector. Numerical simulations show that the proposed method effectively alleviates the

streaking artifacts without changing the background images.

Mathematics subject classification: 65N38, 65N30.

Key words: Computed tomography, Metal artifact reduction, Beam hardening, Radon
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1. Introduction

Recently, a significant portion of patients taking CT scans contains high-attenuation ob-

jects, due to the rapidly increased number of implanted prostheses associated with a rapidly

aging population. Since high-attenuation objects in CT scan may induce serious streaking and

shadow artifacts, resulting in loss of information on the region adjacent to high-attenuation

objects, there have been a great demand for effective metal artifact reduction (MAR) without

affecting important features in CT images. High-attenuation objects causing serious streaking

and shadow artifacts include hip replacements, dental fillings, surgical clips, and pacemaker.

The most commonly used CT reconstruction algorithm is the filtered back-projection (FBP)

algorithm [6], which is based on the assumption that the projection data is contained in the

range space of the Radon transform. However, in the presence of metallic objects, the projection

data may not be located near the range space of the Radon transform as shown in Fig. 2.1. It
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seems that the degree of the discrepancy is somewhat connected to the streaking and shadow

artifacts in CT images reconstructed by least square-based schemes, which seek to minimize

the difference between the projection data and the Radon transform of an image function.

Over the past few decades, numerous researches on MAR have been conducted to deal with

these metallic object-induced streaking and shadow artifacts. The dual-energy CT (DECT) [2]

can provide the virtual monochromatic CT image (which are less affected by the metal artifacts

due to beam hardening effects) using two non-linear projection data generated at two different

energies. However, DECT requires a additional dose of radiation compared with single-energy

CT [8]. Most of existing MAR methods can be classified into statistical iterative reconstruction

methods [9,10,18,22,32], data completion/inpainting-based methods [1,4,13,15,19,23,28], and

hybrid methods combining the aforementioned methods [16]. However, these existing methods

have their own limitations; the iterative reconstruction techniques requires prior knowledge of

energy-dependent attenuation coefficients of the materials to be imaged and the incident X-ray

spectrum [30], and the use of inpainting methods may introduce new artifacts [19,20]. It would

be desirable to develop a novel method of extracting streaking and shadow artifacts without

affecting intact anatomical images.

In this paper, we shall limit ourselves on metal streaking and shadow artifacts induced by

beam hardening, although there are several other causes of streak artifacts such as scatter,

nonlinear partial volume effects, photon starvation, motion, and edge effects [5, 19]. The beam

hardening is brought from the inherent polychromatic nature of medical X-ray source. Metallic

object-associated beam harding causes a severe discrepancy between X-ray projection data

and the sinogram space, the range space of the Radon transform. We investigate how the

beam hardening-induced discrepancy is linked to the streaking and shadow artifacts. Given a

projection data P , let ΠP denote its orthogonal projection onto the sinogram space, as shown

in Fig. 2.1. We observed that the degree of the discrepancy ΠP − P is linked to the streaking

and shadow artifacts. From this observation, we conjecture the followings: If ΠP − P = 0,

there is no artifacts except cupping artifacts. On the other hand, if the L2 norm of ΠP − P is

not small, any least square solutions or FBP may not provide acceptable images. A rationale

for this observation is provided in Section 2.

In Section 3, we propose a reconstruction method using the recent MAR technique of the

geometric corrector invented by Park et al. [26], which can handle the inconsistency of pro-

jection data P . The geometric corrector is a function of metal geometries and a control pa-

rameter associated with all energy-dependent factors including attenuation coefficients and the

spectrum of X-ray source. The novelty of the geometric corrector [26] is to extract the metal-

induced streaking and shadow artifacts selectively without affecting intact anatomical images

when prior knowledge about the shapes of metallic object is available. The proposed method

takes advantage of this geometric corrector to compute the parameter and the target image

(beam hardening-free image) simultaneously. In addition, to suppress the noise artifacts, total-

variation regularization [29] is imposed on a proposed model, and this model is efficiently solved

by the augmented Lagrangian method [11,27]. We conducted numerical simulations to evaluate

the performance of the proposed method.

2. Method

Let Ω be a cross-sectional slice to be imaged. Let f(x, E) be the attenuation coefficient

at point x = (x1, x2) ∈ Ω and energy level E. Throughout this section, we assume that high
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density materials occupy the subdomains D1, D2 . . . , DN of Ω. Then, f(x, E) can be expressed

approximately as [14]:

f(x, E) ≈ f0(x) +
N∑
i=1

µDi(E)χDi(x), (2.1)

where µD denotes the linear attenuation coefficient of the material occupying the region D.

Here, f0 represents the attenuation coefficient distribution for tissues, which are approximately

independent to energy level E.

Fig. 2.1. Illustration of the phenomenon in Observation 2.1.

The projection data Pf (φ, s) at direction θ = (cosφ, sinφ), φ ∈ [0, 2π), is given by

Pf (φ, s) = − ln

(∫ E

E

η(E) exp
{
−Rf(φ, s, E)

}
dE

)
, (2.2)

where η(E) represents a normalized X-ray spectrum with its support in the interval [E,E], i.e,∫ E

E
η(E)dE = 1, and R is the Radon transform given by

Rf(φ, s,E) =

∫
R2

f(x, E)δ(θ · x− s)dx. (2.3)

Here, δ is the dirac delta function. It is well known that the linear map R is bounded from

Hα−1/2(R2) to Hα([0, 2π) × R) [21]. The commonly used CT reconstruction method is the

filtered backprojection algorithm (FBP) given by

B[Pf ](x) =
1

4π2

∫ 2π

0

∫
R

∂
∂sPf (φ, s)

x · θ − s
dsdφ =

1

4π
R∗
(
H
[
∂

∂s
Pf

])
(x), (2.4)
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Fig. 2.2. Illustration of linear attenuation coefficient µD(E) of the materials such as iron, gold, bone

and tissue in the interval [20, 80] (keV) with a log-scale on y-axis (a), and normalized X-ray spectrum

η(E) for tungsten anode generated at a tube voltage 80 kVp (b) [7].

where H is the Hilbert transform with respect to the variable s and R∗ is the backprojection

operator (the dual of R) defined using duality:∫ 2π

0

∫
R
Rf(φ, s)g(φ, s)dsdφ =

∫
R2

f(x)

[ ∫ 2π

0

g(φ,x · θ)dφ︸ ︷︷ ︸
R∗g(x)

]
dx, (2.5)

Fig. 2.2 shows the linear attenuation coefficient µD(E) of the materials such as gold, iron, bone

and tissue (Fig. 2.2 (a)), and normalized X-ray spectrum η(E) (Fig. 2.2 (b)).

Observation 2.1. Let X ⊂ L2([0, 2π)×R) be the range space of the Radon transform R. Let

Π be the map from L2([0, 2π)× R) onto X given by

ΠP = argmin
G∈X

∥P −G∥L2([0,2π)×R) for P ∈ L2([0, 2π)× R). (2.6)

We have the followings.

1. For Pf ∈ L2([0, 2π)× R),

RB[Pf ] = ΠPf and B[Pf ] = argmin
g∈H−1/2(R2)

∥Pf −Rg∥L2([0,2π)×R). (2.7)

2. Let D1 and D2, respectively, be two disjoint disks centered at x1 and x2 with radius

being r1 and r2. Let f0 ∈ L2(Ω) and let fi(x, E) = µ(E)χDi(x) and i = 1, 2 with µ(E)

being the linear attenuation coefficient of a high density object at energy level E. Then

we have

(a) ΠPf0+fi = Pf0+fi and B[Pf0+fi ](x) = f0(x) + ρi(|x− xi|)χDi(x) for i = 1, 2, where

ρi : [0, ri] → (0,∞) is a monotonically increasing function expressing cupping arti-

facts in Di. Hence, B[Pf0 + Pf1 + Pf2 ] does not contain any artifact in Ω \D1 ∪D2.

(b) ΠPf0+f1+f2 ̸= Pf0+f1+f2 . The misfit of ΠPf0+f1+f2 − Pf0+f1+f2 is connected closely

to the difference Pf1+f2 − (Pf1 + Pf2), which generates the streaking and shadow

artifacts in CT images.
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To give the proof of the above observations, let Φ(g) = ∥Pf −Rg∥2L2([0,2π)×R). Then, for all

u ∈ H−1/2([0, 2π)× R) with compact support and t ∈ R, we have

d

dt
Φ(g + tu)

∣∣∣∣
t=0

= −2

∫ 2π

0

∫
R
(Pf (φ, s)−Rg(φ, s))Ru(φ, s)dφds

= −2

∫
R2

u(x)R∗[Pf −Rg](x)dx. (2.8)

The last equality follows from the duality of R∗ in (2.5). From (2.8), the direction for which

Φ(g) decreases most rapidly is given by u = R∗[Pf −Rg], and Φ attains its minimum at g being

0 = R∗[Pf −Rg]. Now, we are ready to prove

(R∗R)−1R∗Pf = B[Pf ]. (2.9)

Note that for f(x) and g(φ, s), we have [21]

R∗Rf(x) = 1

4π2

∫
R2

∫
R2

4π

|ξ|
f(y)eiξ·(x−y)dydξ, (2.10)

F2[R∗g](ξ) =
2π

|ξ|

[
F1[g] (φξ, |ξ|) + F1[g] (−φξ,−|ξ|)

]
, (2.11)

where (cosφξ, sinφξ) =
ξ
|ξ| and Fn is the n-dimensional Fourier transform given by

Fn[g](ξ) =

∫
Rn

g(x)e−iξ·xdx. (2.12)

From (2.10) and (2.11), we have

(R∗R)−1R∗Pf (x) =
1

4π2

∫
R2

∫
R2

|ξ|
4π

R∗Pf (y)e
iξ·(x−y)dydξ

=
1

8π2

∫
R2

[
F1[Pf ] (φξ, |ξ|) + F1[Pf ] (−φξ,−|ξ|)

]
eiξ·xdξ

=
1

16π2

∫ 2π

0

∫
R
|ω|
[
F1[Pf ] (φ, ω) + F1[Pf ] (−φ,−ω)

]
eiωθ·xdωdφ. (2.13)

The last equality (2.13) follows from ξ = ωθ.

Using F1[Pf ] (φ, ω) = F1[Pf ] (−φ,−ω) and the fact that F1[H ∂
∂tPf ](φ, ω) = |ω|F1[Pf ](φ, ω)

[21], we have

(R∗R)−1R∗Pf (x) =
1

8π2

∫ 2π

0

∫
R
|ω|F1[Pf ] (φ, ω) e

iωθ·xdωdφ

=
1

4π

∫ 2π

0

1

2π

∫
R
F1

[
H ∂

∂s
Pf

]
(φ, ω)eiωθ·xdωdφ

= B[Pf ]. (2.14)

This completes the proof of the Observation 2.1.1.

Next, we provide a rationale for the second observation which considers the special case

where two metallic disks D1 and D2 are contained in the field of view of CT. As shown in Fig.

2.1, the data Pf is consistent in all the regions except the diamond shaped area A⋄ := {(φ, s) :
RχD1(φ, s)RχD2(φ, s) ̸= 0}, that is,

Pf0+f1+f2 = Pf0 + Pf1 + Pf2 in [0, 2π)×R \A⋄.
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On the other hand, Pf is inconsistent only in the small diamond region A⋄. From the nature of

the orthogonal projection Π onto the sinogram space, this local inconsistency on the diamond

region A⋄ generates the global discrepancy ΠPf − Pf ̸= 0 on the entire region [0, 2π) × R.
Since the least square-based CT reconstruction (or FBP) inherently uses the globally corrupted

data ΠPf instead of the locally inconsistent data Pf , the reconstructed image B[Pf ] contains

streaking and shadow artifacts.

On the other hand, in the case when the projection data is Pf0+f1 (i.e. the beam-hardening

is generated by the single disk D1), there is no streaking and shadow artifacts. Definitely, as a

result of beam-hardening, the reconstructed image B[Pf0+f1 ] contains cupping artifacts inside

of the region D1, but this cupping artifact does not destroy the intact image outside D1. The

reason is that ΠPf0+f1 is exactly the same as Pf0+f1 , that is, no discrepancy (ΠPf0+f1−Pf0+f1 =

0) in this case. 3D surface figures of B[ΠPf0+f1+f2 ] and B[Pf0 +Pf1 +Pf2 ] in Fig. 2.1 illustrates

these phenomenons.

2.1. Metal artifacts correction algorithm

The goal of MAR is to reveal anatomical and pathological features by reducing high attenuation-

induced artifacts. This section suggests a beam hardening correction method using the nonlinear

beam-hardening corrector [26]. Let high attenuation objects occupy a two dimensional region

D = ∪N
i=1Di in the CT scan plane. Let µDi(E) be the linear attenuation coefficient of the

object Di at E. For a fixed E0 ∈ [E,E], assume that the linear attenuation coefficients µD in

(2.1) is approximated by

µDi(E) ≈ µDi(E0) + (E − E0)
∂µDi

∂E

∣∣∣∣
E=E0

. (2.15)

Then, the distribution of attenuation coefficient f(x, E) in (2.1) can be expressed as [24,25]

f(x, E) ≈ f0(x) +
N∑
i=1

[µDi(E0)χDi(x)] + (E − E0)
N∑
i=1

[
∂µDi

∂E

∣∣∣∣
E=E0

χDi(x)

]
(2.16)

for (x, E) ∈ (Ω×[E,E]). Our numerical simulation show that (2.16) is a good approximation to

reduce the streaking and shadow artifacts in B[Pf ]. With the assumption (2.16), the projection

data Pf in (2.2) can be approximated as

Pf (φ, s) ≈ Rf0(φ, s) +
N∑
i=1

[
µDi(E0)RχDi(φ, s)

]
− ln

∫ E

E

η(E) exp

{
− (E − E0)

N∑
i=1

[
αiRχDi(φ, s)

]}
dE, (2.17)

where αi =
∂µDi

∂E

∣∣∣
E=E0

(x) on Di and 0 otherwise.

We try to eliminate the beam-hardening factors in the projection Pf , in order to reconstruct

the target image ftarget = f0 +
∑N

i=1 [µDi(E0)χDi ]. According to the derivation of the beam-

hardening corrector [26], the inconsistency term Pf −Rftarget can be expressed as

[Pf −Rftarget](φ, s) ≈ ψD,λ(φ, s), (2.18)
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where λ = (λ1, λ2, . . . , λN ) is an unknown parameter depending on the incident X-ray spectrum

η(E) and variation of the linear attenuation coefficient µDi(E) with respect to E, and

ψD,λ(φ, s) = − ln

 sinh
(∑N

i=1 λiRχDi(φ, s)
)

∑N
i=1 λiRχDi(φ, s)

 . (2.19)

Based on the above approximation (2.18), we propose the following minimization problem

for determining both the unknown target image f and the parameter λ ∈ RN :

argmin
f,λ

{
Φ(f,λ) :=

γ

2
∥Pf −Rf − ψD,λ∥2L2([0,2π)×R) + ∥∇f∥L1(Ω)

}
, (2.20)

where ψD,λ is the function in the right side of (2.18), ∥∇f∥L1(Ω) the TV-regularization term,

and γ the regularization parameter. Before application of (2.20), we may determine D by the

segmentation using simple thresholding [13].

In order to solve the problem (2.20), we use the augmented Lagrangian method [11,27,31].

By introducing auxiliary variable q = ∇f , we solve the following problem.

min
f,λ,q

max
τ

∫
Ω

|q|dx+γ
2

∫ 2π

0

∫
R
|Pf−Rf−ψD,λ|2dφds+

∫
Ω

τ · (q−∇f)dx+ r
2

∫
Ω

|q−∇f |2dx. (2.21)

The augmented Lagrangian algorithm is summarized in the Algorithm 2.1.

Algorithm 2.1.

1. Initialization: q0 = τ 0 = 0, f0 = 0 and λ0 chosen by solving the problem (18) in [26].

2. For fixed multiplier τ k, solve

(fk+1,λk+1) = argmin
f,λ

γ

2

∫ 2π

0

∫
R
|Pf −Rf − ψD,λ|2dφds

−
∫
Ω

τ k · ∇fdx+
r

2

∫
Ω

|q −∇f |2dx (2.22)

and solve

qk+1 = argmin
q

∫
Ω

|q|dx+

∫
Ω

τ k · qdx+
r

2

∫
Ω

|q −∇f |2dx (2.23)

3. Update τ k+1 by

τ k+1 = τ k + r(qk+1 −∇fk+1) (2.24)

We solve the problem (2.22) iteratively by

fk+1 = argmin
f

γ

2

∫ 2π

0

∫
R
|Pf −Rf − ψD,λk |2dφds−

∫
Ω

τ k · ∇fdx

+
r

2

∫
Ω

|q −∇f |2dx, (2.25)

λk+1 = argmin
λ

∥Pf −Rfk+1 − ψD,λ∥2L2([0,2π)×R). (2.26)

The nonlinear problem (2.26) is solved by using the standard Newton’s method as in [26].
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Fig. 2.3. Simulation result using the proposed method. (a). abdomen phantom containing for metallic

objects (irons), (b). uncorrected CT image B[Pf ], (c). corrected image obtained from (2.20) with the

regularization parameter γ = 20. Figure (d)-(f) depict the difference image to the image (a) (C=1750

HU/W=6500 HU for CT images (a)-(c), and C=-1000 HU/W=6000 HU for difference images (d)-(e)).

3. Results

Numerical simulations were conducted to test the performance of the proposed method. For

the numerical simulation, the projection data Pf described in (2.2) is generated for the tube

voltage 80 kVp [12]. Poisson noise is added to the measured Pf with the 0.01 noise level (i.e.

standard deviation of Pf on the outside of support of Pf ). In our simulations, other effects

such as photon scattering and photon starvation effect were not modeled. To simulate beam

hardening artifacts, we superposed four iron objects in abdomen phantom as shown in Fig. 2.3

(a). In this numerical simulation, f is assumed as

f(x, E) = f0(x, E) +
4∑

i=1

µiron(E)χDi(x), (3.1)

where µiron(E) is the linear attenuation coefficient of the iron given in Fig. 2.2 and f0 is the

background image consisting of bone and tissues. The uncorrected image in Fig. 2.3 (b) is

obtained by the FBP algorithm in (2.4). The proposed method was applied to remove the

severe streaking and shadow artifacts from the reconstructed image B[Pf ]. Here, the regular-

ization parameter γ = 20 was empirically chosen to minimize the normalized root mean square

difference (NRMSD) [17] between the corrected image (fcor) and the metal artifacts-free image
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B[Pf0 ] (See Fig. 2.3 (a)) on Ω \D; the NRMSD is given by

NRMSD(%) =

[∫
Ω\D |fcor(x)−B[Pf0 ](x)|2dx∫

Ω\D |B[Pf0 ](x)|2dx

]1/2
× 100. (3.2)

Fig. 2.3 (c) shows that streaking and shadow artifacts are substantially reduced in the

corrected image. Moreover, morphological structure of phantom corrupted by metal artifacts

are considerably recovered. With the aid of the regularization term in (2.20), the proposed

algorithm suppresses the streaking artifacts due to noise as well. The remaining metal artifacts

in Fig. 2.3 (c) may be mainly due to our model assumption error in (2.15).

Fig. 3.1. Figure (a) depicts the convergence curve which shows the energy functional Φ(fk, λk) in

(2.20) as a function of iteration k. Figures (b)–(d) show the reconstructed image fk for k = 1, 70, 140,

respectively.

Fig. 3.1 (a) depicts the convergence curve which shows the energy functional Φ(fk, λk) in

(2.20) as a function of iteration k. Fig. 3.1 (b)–(d) illustrate the reconstructed image fk for

k = 1, 70, 140, respectively. Fig. 3.1 shows that the sequence {Φ(fk, λk)} converges for the

initial parameter (0, λ0), where λ0 is chosen by solving the problem (18) in [26]. Streaking and

shading artifacts in fk are reduced for the number of iteration increasing. (See Fig. 3.1 (b)–(d))

Fig. 3.2. Comparison between the proposed method and other existing methods. (a). uncorrected CT

image (b). empirical beam hardening correction (EBHC) method [14] (c). metal artifact correction

method (MAC-BC) [26]. (d). the proposed method with parameter γ = 20. (C=1750 HU/W=6500

HU for all CT images).

Fig. 3.2 shows the comparison between the proposed method with other existing methods

such as the empirical beam hardening correction (EBHC) methods [14] and the metal artifact

correction method (MAC-BC) proposed in [26]. Compared with EBHC and MAC-BC methods,
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the proposed method effectively reduces the streaking artifacts caused by metals and noise

without generating new streaking artifacts. For the quantitative evaluation of the algorithms

performance, NRMSD (%) was computed on Ω\D. The NRMSD of uncorrected, EBHC, MAC-

BC and proposed method were 36.34, 29.24, 28.22 and 15.56, respectively. In terms of NRMSD,

the proposed method shows better performance than those two methods.

4. Discussion and Conclusion

The metal artifact reduction in CT has been an important and challenging issue for dental

and medical fields, as MAR is more demanding for various applications including the forensic

dental identification and the rapid prototyping of dental structures.

We knew that the beam hardening causes the discrepancy between the projection data (P)

and its orthogonal projection (ΠP ) onto the range space of the Radon transform. Although the

least square-based algorithm is to find an image f which minimizes the fidelity term ∥P −Rf∥,
its fundamental nature uses the orthogonal projection ΠP instead of P , regardless of size of the

discrepancy ΠP − P . Hence, with this least square approach, streaking and shadow artifacts

due to the beam hardening may be unavoidable. We observe that the streaking and shadow

artifacts are closely linked to the size of the discrepancy ΠP−P . From Fig. 2.1, the inconstancy

of P occurs in a small local region, whereas the error ΠP −P appears globally. Hence, it seems

to be desirable to amend P in the small local region to be consistent in the sinogram space,

because P is somehow consistent in most regions.

Recently, Park et al [26] has derived the analytic form of a beam hardening corrector, which

aims to express the inconsistency of P in terms of the geometries of metallic objects. Hence,

given prior knowledge of metal geometries, it is possible for this corrector to be used to handle

the local inconsistency of P . Taking advantage of this beam-hardening corrector, a minimiza-

tion model is proposed to provide beam hardening-free images. The proposed method with

an optimal regularization parameter effectively reduce the streaking artifacts in reconstructed

image as well as noise artifacts. The proposed model is mainly based on the (2.17), which does

not consider the photon starvation effect [3]. Further research is necessary to deal with the

streaking artifacts caused by the photons starvation.
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