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Abstract

To reduce the communication among processors and improve the computing time

for solving linear complementarity problems, we present a two-step modulus-based syn-

chronous multisplitting iteration method and the corresponding symmetric modulus-based

multisplitting relaxation methods. The convergence theorems are established when the

system matrix is an H+-matrix, which improve the existing convergence theory. Numeri-

cal results show that the symmetric modulus-based multisplitting relaxation methods are

effective in actual implementation.
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1. Introduction

Given a real matrix A ∈ R
n×n and a real vector q ∈ R

n, the linear complementarity problem

abbreviated as LCP(q, A) is to find a pair of real vectors r, z ∈ R
n such that

r := Az + q ≥ 0, z ≥ 0 and zT (Az + q) = 0.

The linear complementarity problem has extensive applications in the field of economy and

engineering; see [11,14]. The modulus method is one of the classic iteration methods for solving

linear complementarity problems; see, e.g., [13,21,24]. More recently, Hadjidimos and Tzoumas

presented the extrapolated modulus algorithms in [17,18], and Bai presented the modulus-based

matrix splitting iteration method in [3]. These two new methods are very effective and practical

in numerical computation.

For large sparse linear complementarity problems arising in the engineering applications, the

multisplitting iterative methods are powerful tools to enlarge the scale of problem and speed up

the computation; see, e.g., [1, 2, 4, 5, 7, 12, 22]. Recently, by an equivalent reformulation of the

linear complementarity problem into a system of fixed-point equations, Bai and Zhang have con-

structed the modulus-based synchronous multisplitting (MSM) iteration methods in [7], which

are suitable to be implemented parallelly on multiprocessor systems. As the communication

among processors is much more time-consuming than the computation, we intend to reduce
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the communication by making full use of the previous iteration and communication. To this

end, we present the two-step modulus-based synchronous multisplitting iteration methods as

well as their relaxed variants in this paper, which consist of two sweeps at each iteration step.

We remark that these two-step methods are different from the two-stage methods presented

in [8,27], which are inner/outer iteration methods aimed to solve the outer iteration efficiently.

The remaining part of this paper is organized as follows: In Section 2, we introduce some

notations and briefly review the MSM iteration methods. In Section 3, we propose the two-step

modulus-based synchronous multisplitting iteration methods as well as their relaxed variants.

In Section 4, we prove their convergence when the system matrix is an H+-matrix. Numerical

results are given in Section 5. Finally, we make a conclusion in Section 6.

2. Notations and Preliminaries

For A = (aij) ∈ R
m×n and B = (bij) ∈ R

m×n, we write A ≥ B (A > B) if aij ≥ bij
(aij > bij) hold for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. If O is the null matrix and A ≥ O (A > O),

we say that A is a nonnegative (positive) matrix. |A| and AT denote the absolute value and

the transpose of the matrix A, respectively.

For a square matrix A = (aij) ∈ R
n×n, we denote its spectral radius and diagonal part by

ρ(A) and diag(A), respectively. Its comparison matrix 〈A〉 = (〈aij〉) is defined by 〈aij〉 = |aij |

if i = j and 〈aij〉 = −|aij | if i 6= j. It is called an M -matrix if its off-diagonal entries are all

non-positive and A−1 ≥ O, an H-matrix if its comparison matrix 〈A〉 is an M -matrix, and an

H+-matrix if it is an H-matrix with positive diagonal entries [2, 9, 25]. Note that if A is an

H+-matrix, then ρ(D−1|B|) < 1, where D = diag(A) and B = D − A; see [9]. In this paper,

we focus on the case that A is an H+-matrix, which is a sufficient condition for LCP(q, A) to

possess a unique solution for any q.

If A is an M -matrix and Λ is a positive diagonal matrix, then A ≤ B ≤ Λ implies that B is

an M -matrix. If A is an H-matrix, then A is nonsingular and |A−1| ≤ 〈A〉−1; see, e.g., [9, 15].

The splitting A = M − N is called an H-compatible splitting if it satisfies 〈A〉 = 〈M〉 − |N |;

see, e.g., [16].

Lemma 2.1. ([19,20]). Let M = (mij) ∈ R
n×n be a strictly diagonally dominant matrix. Then

∥

∥M−1N
∥

∥

∞
≤ max

1≤i≤n

n
∑

j=1

|nij |

|mii| −
∑

j 6=i

|mij |

holds for any matrix N = (nij) ∈ R
n×n.

Lemma 2.2. ([3]). Let A = M − N be a splitting of the matrix A ∈ R
n×n, Ω be a positive

diagonal matrix, and γ be a positive constant. For the LCP (q, A), the following statements

hold true:

(i) if (z, r) is a solution of the LCP(q, A), then x = 1
2γ(z −Ω−1r), with |x| = 1

2γ(z +Ω−1r),

satisfies the implicit fixed-point equation

(Ω +M)x = Nx+ (Ω−A)|x| − γq; (2.1)
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(ii) if x satisfies the implicit fixed-point Eq. (2.1), then

z = γ−1(|x|+ x) and r = γ−1Ω(|x| − x)

is a solution of the LCP(q, A).

To precisely describe the MSM iteration method, we first state the concept of matrix multi-

splitting. Let ℓ be a given positive integer with ℓ ≤ n, A = Mk −Nk (k = 1, . . . , ℓ) be splittings

of the system matrix A ∈ R
n×n, and Ek ∈ R

n×n (k = 1, . . . , ℓ) be nonnegative diagonal matri-

ces satisfying
∑ℓ

k=1 Ek = I (the identity matrix). Then the collection of triples (Mk, Nk, Ek)

(k = 1, . . . , ℓ) is called a multisplitting of the matrix A, and the matrices Ek (k = 1, . . . , ℓ) are

called weighting matrices; see [6,23]. Assume that (Mk, Nk, Ek) (k = 1, . . . , ℓ) is a multisplitting

of the system matrix A ∈ R
n×n, γ is a positive constant and Ω is a positive diagonal matrix.

Then the MSM iteration method established in [7] can be described as follows.

Method 2.1. (The MSM Iteration Method for LCP(q, A))

Step 1. Choose an initial vector x(0) ∈ R
n, and set m := 0;

Step 2. For k = 1, . . . , ℓ, we solve the linear subsystem

(Ω +Mk)x
(m+1,k) = Nkx

(m) + (Ω−A)|x(m)| − γq,

on the k-th processor, and obtain the solution x(m+1,k);

Step 3. By combining the local updates of ℓ processors together, we get

x(m+1) =

ℓ
∑

k=1

Ekx
(m+1,k) and z(m+1) =

1

γ

(

|x(m+1)|+ x(m+1)
)

;

Step 4. If z(m+1) satisfies a prescribed stopping rule, then terminate. Otherwise, set m :=

m+ 1 and return to Step 2.

3. The Two-Step Modulus-Based Multisplitting Iteration Method

From the numerical results in [26], we know that for some linear complementarity problems

the two-step modulus-based matrix splitting iteration method is effective to decrease the number

of iteration steps. Thus, for the MSM iteration method we take two sweeps at each iteration

step to reduce the communication among the processors, which may improve the computing

time for solving linear complementarity problems. We shall call this iteration method the

two-step modulus-based synchronous multisplitting (TMSM) iteration method. Assume that

(M ′
k, N

′
k, Ek) and (M ′′

k , N
′′
k , Ek) (k = 1, . . . , ℓ) are two multisplittings of the system matrix

A ∈ R
n×n, the TMSM iteration method is as follows:
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Method 3.1. (The TMSM Iteration Method for LCP(q, A))

Step 1. Choose an initial vector x(0) ∈ R
n, and set m := 0;

Step 2. For k = 1, . . . , ℓ, we solve the linear subsystem

{

(Ω +M ′
k)x

(m+ 1

2
,k) = N ′

kx
(m) + (Ω−A)|x(m)| − γq,

(Ω +M ′′
k )x

(m+1,k) = N ′′
k x

(m+ 1

2
,k) + (Ω−A)|x(m+ 1

2
,k)| − γq,

(3.1)

on the k-th processor, and obtain the solution x(m+1,k);

Step 3. By combining the local updates of ℓ processors together, we get

x(m+1) =

ℓ
∑

k=1

Ekx
(m+1,k) and z(m+1) =

1

γ

(

|x(m+1)|+ x(m+1)
)

;

Step 4. If z(m+1) satisfies a prescribed stopping rule, then terminate. Otherwise, set m :=

m+ 1 and return to Step 2.

Similar to the MSM iteration method, we can choose the weighting matricesEk (k = 1, . . . , ℓ)

suitably such that the tasks distributed on the ℓ processors are well balanced. We remark that

when ℓ = 1, the TMSM iteration method naturally reduces to the two-step modulus-based

matrix splitting iteration method in [26].

To make the TMSM iteration method more convenient in concrete applications, we consider

the usual symmetric relaxation methods. To this end, we let D = diag(A), L′
k be a strictly

lower-triangular matrix and U ′
k = D − L′

k − A, and U ′′
k be a strictly supper-triangular matrix

and L′′
k = D− U ′′

k −A. Here, we call (D − L′
k, U

′
k, Ek) and (D − U ′′

k , L
′′
k, Ek) (k = 1, . . . , ℓ) are

the triangular multisplittings of the matrix A. Note that U ′
k and L′′

k are zero-diagonal matrices.

By taking

M ′
k =

1

α
(D − βL′

k), N ′
k =

1

α
[(1− α)D + (α − β)L′

k + αU ′
k],

M ′′
k =

1

α
(D − βU ′′

k ), N ′′
k =

1

α
[(1 − α)D + (α− β)U ′′

k + αL′′
k ],

in Method 3.1, where α and β are prescribed relaxation parameters, we can obtain a symmetric

modulus-based synchronous multisplitting accelerated overrelaxation (SMSMAOR) iteration

method, in which the local update x(m+1,k) is obtained by solving the triangular linear systems



























(αΩ +D − βL′
k)x

(m+ 1

2
,k)

= [(1− α)D + (α − β)L′
k + αU ′

k]x
(m) + α[(Ω−A)|x(m)| − γq],

(αΩ +D − βU ′′
k )x

(m+1,k)

= [(1− α)D + (α − β)U ′′
k + αL′′

k]x
(m+ 1

2
,k) + α[(Ω−A)|x(m+ 1

2
,k)| − γq].

In the SMSMAOR iteration method, a forward sweep is followed by a backward sweep at each

iteration step.
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If we choose the parameter pair (α, β) to be (α, α) and (1, 1), respectively, the SMSMAOR

method reduces to the so-called SMSMSOR and SMSMGS methods, correspondingly. These re-

laxation methods are quite practical and efficient for solving large sparse linear complementarity

problems on the high-speed multiprocessor systems.

4. Convergence Theorems

In this section, we firstly improve the convergence theorems of the two-step modulus-based

matrix splitting iteration method in [26]. Then, we prove the convergence of the TMSM and

SMSMAOR iteration methods.

Let A ∈ R
n×n be an H+-matrix and A = M −N be an H-compatible splitting. Denote by

L(M,N,Ω) = (Ω + 〈M〉)−1(|Ω−A|+ |N |), (4.1)

we can prove the following conclusion.

Theorem 4.1. Let A = (aij) ∈ R
n×n be an H+-matrix with D = diag(A) and B = D −

A, A = M − N be an H-compatible splitting with M = (mij) ∈ R
n×n. Assume that Ω =

diag(ω1, . . . , ωn) ∈ R
n×n is a positive diagonal matrix satisfying Ω ≥ D. Then

ρ(L(M,N,Ω)) ≤ 1− 2
(

1− ρ(D−1|B|)
)

min
1≤i≤n

aii
ωi +mii

< 1,

where D−1B is the Jacobi matrix associated with A.

Proof. We construct an irreducible matrix Ã = (ãij) ∈ R
n×n as

ãij =

{

aij , aij 6= 0,

ε, aij = 0,
i, j = 1, . . . , n.

Obviously, diag(Ã) = D. Let Ã = M̃ − Ñ be the corresponding H-compatible splitting which

satisfies: if aij 6= 0, then m̃ij = mij , ñij = nij ; if aij = 0, then m̃ij = ε, ñij = 0. Similar to the

proof of Lemma 4.1 in [26], for sufficiently small ε > 0, it holds that

0 < ρ(D−1|B̃|) < 1,
∑

j 6=i

|ãij |vj = ρ(D−1|B̃|)aiivi, 1 ≤ i ≤ n,

where B̃ = D − Ã, v = (v1, . . . , vn)
T > 0 is a positive vector.

Let V = diag(v1, . . . , vn). We can prove that ΩV + 〈M̃〉V is a strictly diagonally dominant

matrix. Then it follows from Lemma 2.1 that
∥

∥V −1L(M̃, Ñ ,Ω)V
∥

∥

∞
=

∥

∥(ΩV + 〈M̃〉V )−1(|Ω− Ã|V + |Ñ |V )
∥

∥

∞

≤ max
1≤i≤n

(ωi − aii)vi + niivi +
∑

j 6=i

|ãij |vj +
∑

j 6=i

|ñij |vj

(ωi +mii)vi −
∑

j 6=i

|m̃ij |vj

= max
1≤i≤n

[

ωi +mii − 2(1− ρ(D−1|B̃|))aii
]

vi −
∑

j 6=i

|m̃ij |vj

(ωi +mii)vi −
∑

j 6=i

|m̃ij |vj

≤ max
1≤i≤n

ωi +mii − 2(1− ρ(D−1|B̃|))aii
ωi +mii

.
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Here, we make use of the inequality b−c
a−c

≤ b
a
, where the positive constants a, b, c satisfy a−c > 0

and a ≥ b. Thus, we obtain

ρ(L(M,N,Ω)) = lim
ε→0

ρ(L(M̃, Ñ ,Ω))

= lim
ε→0

ρ(V −1L(M̃, Ñ ,Ω)V ) ≤ lim
ε→0

∥

∥V −1L(M̃, Ñ ,Ω)V
∥

∥

∞

≤ lim
ε→0

max
1≤i≤n

ωi +mii − 2(1− ρ(D−1|B̃|))aii
ωi +mii

= 1− 2(1− ρ(D−1|B|)) min
1≤i≤n

aii
ωi +mii

< 1,

since ρ(D−1|B|) < 1. �

We remark that Theorem 4.1 requires Ω ≥ D, while Lemma 4.1 in [26] requires Ω ≥ diag(M).

Since diag(M) ≥ D, we see that the former is an improvement of the latter. In (4.1), let

M =
1

α
(D − βL), N =

1

α
((1 − α)D + (α− β)L + αU),

where D = diag(A), L is the strictly lower-triangular matrix, and U is the zero-diagonal matrix

satisfying A = D − L− U . Denote by

LMAOR(M,N,Ω)

=
(

Ω+
1

α
D −

β

α
|L|

)−1

·
(

|Ω− A|+
1

α
|(1− α)D + (α− β)L + αU |

)

,

we can prove the following conclusion.

Theorem 4.2. Let A = (aij) ∈ R
n×n be an H+-matrix with D = diag(A) and B = D−A, L is

the strictly lower-triangular matrix, and U is the zero-diagonal matrix satisfying A = D−L−U

and 〈A〉 = D − |L| − |U |. Assume that Ω = diag(ω1, . . . , ωn) ∈ R
n×n is a positive diagonal

matrix satisfying Ω ≥ D. Then

ρ(LMAOR(M,N,Ω)) ≤ max
1≤i≤n

ωi +
|1−α|−α

α
aii + 2ρ(D−1|B|)aii

ωi +
1
α
aii

< 1,

provided that 0 < β ≤ α < 1
ρ(D−1|B|) .

Proof. We construct an irreducible matrix Ã = (ãij) ∈ R
n×n as

ãij =

{

aij , aij 6= 0,

ε, aij = 0,
i, j = 1, . . . , n.

Let Ã = D − L̃ − Ũ = D − B̃, which satisfies: if aij 6= 0, then l̃ij = lij , ũij = uij ; if aij = 0,

then l̃ij = ε, ũij = 0. Consequently, 〈Ã〉 = D − |L̃| − |Ũ |. It follows from 0 < α < 1
ρ(D−1|B|)

that
|1− α| − α

α
+ 2ρ(D−1|B|) <

1

α
.

For sufficiently small ε > 0, it holds that

0 < ρ(D−1|B̃|) < 1,
|1− α| − α

α
+ 2ρ(D−1|B̃|) <

1

α
,

∑

j 6=i

|ãij |vj = ρ(D−1|B̃|)aiivi, 1 ≤ i ≤ n,
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where v = (v1, . . . , vn)
T > 0 is a positive vector. Analogously, we take

M̃ =
1

α
(D − βL̃), Ñ =

1

α
((1 − α)D + (α− β)L̃ + αŨ).

Let V = diag(v1, . . . , vn). Then

V −1LMAOR(M̃, Ñ ,Ω)V

=
(

ΩV +
1

α
DV −

β

α
|L̃|V

)−1

·
(

|Ω−A|V +
1

α
|(1− α)D + (α− β)L̃+ αŨ |V

)

.

From Ω ≥ D and 0 < β ≤ α, we can prove that ΩV + 1
α
DV − β

α
|L̃|V is a strictly diagonally

dominant matrix. Thus, by Lemma 2.1 we obtain

∥

∥V −1LMAOR(M̃, Ñ ,Ω)V
∥

∥

∞

≤ max
1≤i≤n

(

ωi +
|1−α|−α

α
aii

)

vi + 2
∑

j 6=i

|ãij |vj −
β
α

i−1
∑

j=1

|l̃ij |vj

ωivi +
1
α
aiivi −

β
α

i−1
∑

j=1

|l̃ij |vj

= max
1≤i≤n

(

ωi +
|1−α|−α

α
aii + 2ρ(D−1|B̃|)aii

)

vi −
β
α

i−1
∑

j=1

|l̃ij |vj

ωivi +
1
α
aiivi −

β
α

i−1
∑

j=1

|l̃ij |vj

≤ max
1≤i≤n

ωi +
|1−α|−α

α
aii + 2ρ(D−1|B̃|)aii

ωi +
1
α
aii

.

Here, we make use of the relations |B̃| = |L̃| + |Ũ | and b−c
a−c

≤ b
a
, where the positive constants

a, b, c satisfy a− c > 0 and a ≥ b. Thus, we obtain

ρ(LMAOR(M,N,Ω)) = lim
ε→0

ρ(LMAOR(M̃, Ñ ,Ω))

= lim
ε→0

ρ(V −1LMAOR(M̃, Ñ ,Ω)V )

≤ lim
ε→0

∥

∥V −1LMAOR(M̃, Ñ ,Ω)V
∥

∥

∞

≤ lim
ε→0

max
1≤i≤n

ωi +
|1−α|−α

α
aii + 2ρ(D−1|B̃|)aii

ωi +
1
α
aii

= max
1≤i≤n

ωi +
|1−α|−α

α
aii + 2ρ(D−1|B|)aii

ωi +
1
α
aii

< 1.

This completes the proof of the theorem. �

Compared with Theorem 4.3 in [26], we note that in Theorem 4.2:

(i) The positive diagonal matrix Ω satisfies Ω ≥ D;

(ii) The upper bound of the relaxation parameters is 1
ρ(D−1|B|) , which is an improvement of

2
1+ρ(D−1|B|) ;

(iii) L is the strictly lower-triangular matrix, U is the zero-diagonal matrix satisfying A =

D − L− U and 〈A〉 = D − |L| − |U |.
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Theorem 4.3. Let A ∈ R
n×n be an H+-matrix with D = diag(A), (M ′

k, N
′
k, Ek) and (M ′′

k , N
′′
k ,

Ek) (k = 1, . . . , ℓ) be two multisplittings of the matrix A. Assume that A = M ′
k − N ′

k and

A = M ′′
k −N ′′

k are H-compatible splittings for k = 1, . . . , ℓ, and Ω is a positive diagonal matrix

satisfying Ω ≥ D. Then for any initial vector x(0) ∈ R
n, the sequence {z(m)}∞m=0 ⊂ R

n
+

generated by the TMSM iteration method converges to the unique solution z∗ of the LCP(q, A).

Proof. Assume that (z∗, r∗) is the solution of the LCP(q, A). It follows from Lemma 2.2

that x∗ = 1
2γ(z∗ − Ω−1r∗) satisfies the iterative format (3.1). Hence, we can get the following

error relationship of the TMSM iteration method

{

(Ω +M ′
k)(x

(m+ 1

2
,k) − x∗) = N ′

k(x
(m) − x∗) + (Ω−A)(|x(m)| − |x∗|),

(Ω +M ′′
k )(x

(m+1,k) − x∗) = N ′′
k (x

(m+ 1

2
,k) − x∗) + (Ω−A)(|x(m+ 1

2
,k)| − |x∗|).

Combining the analyses of the MSM iteration method in [7] and the two-step modulus-based

matrix splitting iteration method in [26], we know that the errors of the TMSM iteration method

satisfy

|x(m+1) − x∗| ≤

ℓ
∑

k=1

EkL(M
′′
k , N

′′
k ,Ω)L(M

′
k, N

′
k,Ω)|x

(m) − x∗|, (4.2)

where

L(M ′
k, N

′
k,Ω) = (Ω + 〈M ′

k〉)
−1(|Ω−A|+ |N ′

k|),

L(M ′′
k , N

′′
k ,Ω) = (Ω + 〈M ′′

k 〉)
−1(|Ω−A|+ |N ′′

k |).

For simplicity, we denote the iterative matrix of (4.2) by

LTMSM =

ℓ
∑

k=1

EkL(M
′′
k , N

′′
k ,Ω)L(M

′
k, N

′
k,Ω).

Similar to Theorem 4.1, we construct the irreducible H+-matrix Ã and its corresponding

H-compatible splittings

Ã = M̃ ′
k − Ñ ′

k and Ã = M̃ ′′
k − Ñ ′′

k , for k = 1, . . . , ℓ.

As Ω ≥ D, from the proof of Theorem 4.1 we know that there exists a positive diagonal matrix

V such that

lim
ε→0

‖V −1L(M̃ ′
k, Ñ

′
k,Ω)V ‖∞ < 1,

lim
ε→0

‖V −1L(M̃ ′′
k , Ñ

′′
k ,Ω)V ‖∞ < 1

hold for all k = 1, . . . , ℓ. Note that V only depends on the matrix Ã. Denote by Ek =

diag(e
(k)
1 , . . . , e

(k)
n ), k = 1, . . . , ℓ. As Ek (k = 1, . . . , ℓ) are nonnegative diagonal matrices and

satisfy
∑ℓ

k=1 Ek = I, we obtain
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ρ(LTMSM) = ρ
(

ℓ
∑

k=1

EkL(M
′′
k , N

′′
k ,Ω)L(M

′
k, N

′
k,Ω)

)

= lim
ε→0

ρ
(

ℓ
∑

k=1

EkL(M̃
′′
k , Ñ

′′
k ,Ω)L(M̃

′
k, Ñ

′
k,Ω)

)

= lim
ε→0

ρ
(

ℓ
∑

k=1

EkV
−1L(M̃ ′′

k , Ñ
′′
k ,Ω)L(M̃

′
k, Ñ

′
k,Ω)V

)

≤ lim
ε→0

∥

∥

∥

ℓ
∑

k=1

EkV
−1L(M̃ ′′

k , Ñ
′′
k ,Ω)L(M̃

′
k, Ñ

′
k,Ω)V

∥

∥

∥

∞

≤ lim
ε→0

max
1≤i≤n

ℓ
∑

k=1

e
(k)
i ‖V −1L(M̃ ′′

k , Ñ
′′
k ,Ω)L(M̃

′
k, Ñ

′
k,Ω)V ‖∞

≤ max
1≤i≤n

ℓ
∑

k=1

e
(k)
i

(

lim
ε→0

‖V −1L(M̃ ′′
k , Ñ

′′
k ,Ω)V ‖∞

)(

lim
ε→0

‖V −1L(M̃ ′
k, Ñ

′
k,Ω)V ‖∞

)

< 1.

This completes the proof. �

Theorem 4.4. Let A ∈ R
n×n be an H+-matrix with D = diag(A) and B = D − A, (D −

L′
k, U

′
k, Ek) and (D − U ′′

k , L
′′
k, Ek) (k = 1, . . . , ℓ) be two triangular multisplittings, where L′

k

and U ′′
k are the strictly lower-triangular and the strictly upper-triangular matrices, respectively.

Assume that for k = 1, . . . , ℓ, A = D−L′
k−U ′

k satisfy 〈A〉 = D−|L′
k|− |U ′

k|, A = D−L′′
k −U ′′

k

satisfy 〈A〉 = D − |L′′
k| − |U ′′

k |, and the positive diagonal matrix Ω ≥ D. Then, for any initial

vector, the following statements hold true:

(i) the SMSMGS iteration method is convergent;

(ii) the SMSMSOR iteration method is convergent for 0 < α < 1
ρ(D−1|B|) ;

(iii) the SMSMAOR iteration method is convergent for 0 < β ≤ α < 1
ρ(D−1|B|) .

Proof. We only need to verify the validity of the statement (iii), as the statements (i) and

(ii) are its special cases. Now, take

M ′
k =

1

α
(D − βL′

k), N ′
k =

1

α
[(1− α)D + (α− β)L′

k + αU ′
k],

M ′′
k =

1

α
(D − βU ′′

k ), N ′′
k =

1

α
[(1− α)D + (α− β)U ′′

k + αL′′
k].

Similar to Theorem 4.2, we construct the irreducible H+-matrix Ã and its corresponding split-

tings Ã = D − L̃′
k − Ũ ′

k and Ã = D − Ũ ′′
k − L̃′′

k for k = 1, . . . , ℓ. As Ω ≥ D, from the proof of

Theorem 4.2 we know that there exists a positive diagonal matrix V such that

lim
ε→0

‖V −1LMAOR(M̃
′
k, Ñ

′
k,Ω)V ‖∞ < 1,

lim
ε→0

‖V −1LMAOR(M̃
′′
k , Ñ

′′
k ,Ω)V ‖∞ < 1

hold for all k = 1, . . . , ℓ. Note that V only depends on the matrix Ã. The remaining proof is

similar to that of Theorem 4.3. �
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5. Numerical Results

For comparison, we use the same numerical examples as those in [7] to examine the effec-

tiveness of the TMSM iteration methods in this section. The codes are also written in C and

MPICH2, and performed on the same PC clusters. The weighting matrices, the initial vector,

the stopping criterion, etc., are the same as those in [7], too. For completeness, we recite them

briefly. The weighting matrix Ek is set to be

Ek = Diag(0, . . . , 0, Isk , 0, . . . , 0) ∈ R
n×n,

where the size sk = φq + 1 if k ≤ φr , and sk = φq otherwise, with φq and φr being two

nonnegative integers satisfying n = φqℓ + φr and 0 ≤ φr < ℓ. And accordingly, we take L′
k

and U ′′
k to be the strictly lower-triangular part and the strictly upper-triangular part of the

matrix D − EkBEk, respectively. Moreover, we set Ω = D and γ = 2. The initial vector and

the stopping criterion are x(0) = (1, 1, . . . , 1)T ∈ R
n and ‖min{Az(m) + q, z(m)}‖2 < 10−5,

respectively.

Example 5.1. ([7, 8]) The LCP(q, A) is given by

A =



















S −I −I

S −I
. . .

S
. . . −I
. . . −I

S



















∈ R
n×n

and q = (−1, 1,−1, 1, . . .) ∈ R
n, where n = n2

o with no being a given positive integer, and

S = tridiag(−1, 4,−1) ∈ R
no×no is a tridiagonal matrix.

Table 5.1: Numerical Results for SMSMGS and SMSMSOR for Example 5.1.

no Method ℓ 1 2 4 8 16 32 64 128

Tℓ 6.39 3.91 2.64 1.25 0.42 0.18 0.10 0.08

SMSMGS Eℓ 1 0.82 0.61 0.64 0.95 1.11 1.00 0.62

ITℓ 313 314 315 316 320 326 339 365512
Tℓ 3.96 2.56 1.65 0.81 0.30 0.14 0.08 0.06

SMSMSOR Eℓ 1 0.77 0.60 0.61 0.83 0.88 0.77 0.52

ITℓ 163 184 190 193 199 206 216 235

Tℓ 48.94 30.33 20.64 10.66 5.21 2.43 0.83 0.45

SMSMGS Eℓ 1 0.81 0.59 0.57 0.59 0.63 0.92 0.85

ITℓ 588 589 590 591 594 601 614 6401024
Tℓ 31.34 19.28 12.48 6.47 3.25 1.57 0.61 0.32

SMSMSOR Eℓ 1 0.81 0.63 0.61 0.60 0.62 0.80 0.77

ITℓ 319 340 348 351 359 367 379 399

Tℓ 377.59 233.84 159.28 82.45 41.89 21.56 10.25 4.97

SMSMGS Eℓ 1 0.81 0.59 0.57 0.56 0.55 0.58 0.59

ITℓ 1123 1124 1124 1126 1129 1136 1149 11752048
Tℓ 245.88 148.51 93.93 48.91 25.04 12.76 6.39 3.13

SMSMSOR Eℓ 1 0.83 0.65 0.63 0.61 0.60 0.60 0.61

ITℓ 622 650 651 655 671 679 692 711
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Table 5.2: The Experimentally Found Optimal Parameters α for SMSMSOR for Example 5.1.

ℓno

1 2 4 8 16 32 64 128

512 2.9 2.3 2.2 2.2 2.2 2.2 2.3 2.4

1024 2.7 2.4 2.3 2.3 2.3 2.3 2.3 2.4

2048 2.6 2.4 2.4 2.4 2.3 2.3 2.4 2.4

We list in Table 5.1 the elapsed wall time Tℓ (in seconds), the parallel computing efficiency

Eℓ = T1/(ℓTℓ), and the iteration step ITℓ of SMSMGS and SMSMSOR methods for solving

Example 5.1. The experimentally found optimal parameters α for SMSMSOR method are listed

in Table 5.2. From these two tables, we have the following observations and conclusions: (i)

SMSMSOR with the experimentally optimal parameter is superior to SMSMGS in computing

time as well as iteration step. (ii) Comparing with the numerical results of MSMGS and

MSMSOR in Table II in [7], we observe that the iteration steps of SMSMGS and SMSMSOR

drop by more than half, and the computing time of SMSMGS and SMSMSOR decreases by

about 30% and 40%, respectively. These results show that SMSMGS and SMSMSOR are

effective to reduce the communication and improve the computing time. (iii) For Example 5.1,

almost all parallel efficiencies exceed 0.5. Some parallel efficiencies even exceed 1.0, and there

are significant jumps for no = 512 from ℓ = 8 to ℓ = 16 and for no = 1024 from ℓ = 32 to

ℓ = 64. These two phenomena may be caused by the memory systems of the PC clusters.

Example 5.2. ([7, 8]) The LCP(q, A) is the discretization of the free boundary problem de-

scribing flow through a porous dam [10], by the nine-point finite difference scheme with the step

length h = 16/2τ (τ is a positive integer). The system matrix A is as follows:

A = Tridiag(T, S, T ) =





















S T

T S
. . .

T
. . . T
. . . S T

T S





















∈ R
n×n

is a block nt-by-nt tridiagonal matrix with S = tridiag(−4, 20,−4) and T = tridiag(−1,−4,−1)

are both ns-by-ns tridiagonal matrices, where nt = 3 · 2τ−1− 1, ns = 2 · 2τ−1− 1 and n = nsnt.

We show in Tables 5.3 and 5.4 the numerical results of SMSMGS and SMSMSOR methods

for solving Example 5.2. From these two tables, we have the following observations and con-

clusions: (i) SMSMSOR with the experimentally optimal parameter outperforms SMSMGS in

computing time as well as iteration step. (ii) Comparing with the numerical results of MSMGS

and MSMSOR in Table IV in [7], we observe that the iteration steps of SMSMGS and SMSM-

SOR drop by about half and one-third, respectively. For SMSMGS, there is a decrease in

computing time by about 20% compared with MSMGS. While for SMSMSOR, its computing

time increases by about 15% when τ = 6 and 7, and keeps about the same as that of MSMSOR

when τ = 8. (iii) For Example 5.2, almost all parallel efficiencies exceed 0.6. Some parallel

efficiencies even exceed 1.0, and there is a significant jump for τ = 8 from ℓ = 4 to ℓ = 8.

These two phenomena may be caused by the memory systems of the PC clusters. For a fixed

τ , the parallel efficiencies fall suddenly for the biggest ℓ, which should be mainly caused by the

communication among processors.
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Table 5.3: Numerical Results for SMSMGS and SMSMSOR for Example 5.2.

τ Method ℓ 1 2 4 8 16 32 64 128

Tℓ 2.51 1.34 0.68 0.37 0.23 0.18 – –

SMSMGS Eℓ 1 0.94 0.92 0.85 0.68 0.44 – –

ITℓ 4719 4791 4868 5018 5317 5911 – –6
Tℓ 1.77 0.96 0.50 0.27 0.17 0.14 – –

SMSMSOR Eℓ 1 0.92 0.89 0.82 0.65 0.40 – –

ITℓ 3146 3232 3320 3493 3770 4334 – –

Tℓ 39.56 20.58 10.45 5.36 2.88 1.69 1.24 –

SMSMGS Eℓ 1 0.96 0.95 0.92 0.86 0.73 0.50 –

ITℓ 18029 18164 18309 18592 19155 20275 22510 –7
Tℓ 27.82 14.63 7.44 3.87 2.12 1.26 0.95 –

SMSMSOR Eℓ 1 0.95 0.93 0.90 0.82 0.69 0.46 –

ITℓ 12019 12177 12344 12671 13319 14349 16454 –

Tℓ 754.01 451.82 295.15 107.95 52.53 21.94 12.20 8.57

SMSMGS Eℓ 1 0.83 0.64 0.87 0.90 1.07 0.97 0.69

ITℓ 68759 69014 69289 69825 70892 73020 77257 857138
Tℓ 522.83 308.69 200.59 73.62 30.21 16.11 9.14 6.71

SMSMSOR Eℓ 1 0.85 0.65 0.89 1.08 1.01 0.89 0.61

ITℓ 45840 46135 46454 47073 48304 50752 54633 62569

Table 5.4: The Experimentally Found Optimal Parameters α for SMSMSOR for Example 5.2.

ℓτ Grid
1 2 4 8 16 32 64 128

6 65 × 97 2.0 2.0 2.0 2.0 2.1 2.4 – –

7 129 × 193 2.0 2.0 2.0 2.0 2.0 2.1 2.4 –

8 257 × 385 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.4

6. Concluding Remarks

We end the paper with the following remarks:

(1) Provided that the system matrix is an H+-matrix, we have proved that the two-step

modulus-based multisplitting iteration method and its accordingly symmetric multisplit-

ting relaxation methods are convergent. Moreover, these two convergence theorems im-

prove the existing convergence theory in [26].

(2) Numerical results have illustrated that the symmetric modulus-based multisplitting relax-

ation methods are effective to reduce the communication among processors and improve

the computing time.
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