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Abstract. In this paper, we first show that for every mapping f from a metric space
Ω to itself which is continuous off a countable subset of Ω, there exists a nonempty
closed separable subspace S⊂Ω so that f |S is again a self mapping on S. Therefore,
both the fixed point property and the weak fixed point property of a nonempty closed
convex set in a Banach space are separably determined. We then prove that every
separable subspace of c0(Γ) (for any set Γ) is again lying in c0. Making use of these
results, we finally presents a simple proof of the famous result: Every non-expansive
self-mapping defined on a nonempty weakly compact convex set of c0(Γ) has a fixed
point.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: Non-expansive mapping, weakly compact convex set, fixed point, Banach space.

1 Introduction

A mapping f from a nonempty set D to itself is said to be a self-mapping of D. If D=
(D,d) is a metric space, then we call the mapping f “Lipschitz” whenever there exists a
constant L>0, so that

d( f (x), f (y))≤ Ld(x,y), ∀x,y∈D.

In this case, we also say precisely that f is L-Lipschitz on D. A mapping f : D → D is
nonexpansive if it is 1-Lipschitz.

We say that a nonempty closed convex set C of a Banach space X has the fixed point
property, if every nonexpansive mapping f defined on each nonempty closed bounded
convex subset D of C has a fixed point, i.e. there is x0 ∈ D so that f (x0) = x0. Mathe-
maticians also often consider the weak fixed point property of a closed convex set C of
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a Banach space X: a Banach space X has the weak fixed point property, if every non-
expansive self-mapping defined on a nonempty weakly compact convex set of X has a
fixed point. As is well known, the metric fixed point theory is a well-developed branch
of fixed point theory, which not only has its own methods and problems, but also relates
with other fields such as geometry of Banach spaces, integral and differential equations,
multivalued analysis and so on. See, for example, Kirk [1].

Denote c0={(xn)n∈N : lim
n→∞

xn=0, ‖x‖∞=sup
n

|xn|}. Let Γ be a nonempty set and c0(Γ)

denote the Banach space(supremum norm) of all real-valued function x on Γ, such that
for any ε>0, {r∈Γ, |x(r)|>ε} is finite, or, equivalently, c0(Γ) consists of all those functions
defined on the set Γ with countable support and with its range as a null sequence. The
spaces c0(Γ) have received renewed interest, because of a powerful mapping theorem of
Lindenstrauss [2]: (1) They are weakly compactly generated Banach spaces; and (2) if E
is a weakly compactly generated Banach space, then there exists a set Γ and a continuous
one-to-one linear map T of E into c0(Γ).

Maurey ([3], 1980) first showed that c0 has weak fixed point property by means of ul-
trapower techniques. Later, Odell and Sternfeld ([4], 1981), Haydon, Odell and Sternfeld
([5], 1981), among many other things, gave Maurey’s theorem different proofs. Borwein
and Sims ([6], 1984), and Domı́nguez Benavides ([7], 1996) proved the same conclusion
holds for c0(Γ). Fuster and Sims ([8], 1998) showed that c0 fails to have the fixed point
property and conjectured that every closed bounded convex subset of c0 with the fixed
point property is weakly compact. An example of Pineda ([9], 2003) showed that the fixed
point property in c0 can not go beyond the class of all nonempty weakly compact convex
subsets, even if to a compact convex subset in some topology slightly weaker than the
weak topology. An affirmative answer to this conjecture was given by Dowling, Lennard
and Turett ([10], 2004).

In this paper, we first show that for every mapping f from a metric space Ω to itself
which is continuous off a countable subset of Ω, there exists a nonempty closed separable
subspace S⊂Ω so that f |S is again a self mapping on S. Therefore, the fixed point prop-
erty of a closed convex set in a Banach space is separably determined. We then prove that
every separable subspace of c0(Γ) (for any set Γ) is again lying in c0. Making use of these
results, we finally present a simple proof of the famous result: Every non-expansive self-
mapping defined on a nonempty weakly compact convex set of c0(Γ) has a fixed point.

2 Separable determination of the fixed point property

In this section, we shall show that the fixed point properties for continuous (in particular,
non-expansive) mappings is separably determined.

For subset A in a topological space, we denote by A, the closure of A.

Lemma 2.1. Suppose that D is a nonempty closed subset of a metric space Ω, and f : D→D is
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a continuous mapping apart from a countable set D0 ⊂ D. Then there exists a closed separable
subset S of D such that S is f -invariant, i.e, f (S)⊂S.

Proof. Given a nonempty separable subset D1⊃D0 of D, we first show

f (D1)≡{ f (x) : x∈D1}

is also separable. Note that f is continuous at each point of S1 ≡ D1\D0. Since S1 is
separable, there is a sequence (xn)⊂S1 which is dense in S1. Given y∈ f (S1), let y= f (x)
for some x ∈ D1. Then density of (xn) in S1 entails that there is a subsequence (xnk

) of
(xn) so that xnk

→ x as k→∞. Continuity of f at x implies that f (xnk
)→ f (x). Thus,

y= f (x)∈ ( f (xnk
)).

Since y is arbitrary, we obtain that

f (S1)⊂ ( f (xn)).

Therefore, f (S1) is separable. Consequently,

f (D1)= f (S1)∪ f (D0)

is separable.
Since

D2≡D1∪ f (D1)

is separable, by iterating the procedure above, we know f (D2) is separable. Assume that
n separable subsets

D1,D2,··· ,Dn with Dj =Dj−1∪ f (Dj−1)

for j=2,··· ,n have been constructed. Next, let

Dn+1=Dn∪ f (Dn).

Then Dn+1 is again separable. Now, we obtain an increasing sequence (Dn) of separable
closed subsets od D with

Dn+1=Dn∪ f (Dn) forall n∈N.

Finally, let

D∞=
∞
⋃

n=1

Dn.

Then D∞ is again separable. We claim f (D∞)⊂D∞. Since

D0∪ f (D0)⊂Dn forall n≥1,
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We get f (D0)⊂D∞. Since

f (D∞)= f (
∞
⋃

n=1

Dn\D0)∪ f (D0),

and since
∞
⋃

n=1
Dn\D0 is dense in D∞\D0, continuity of f on

∞
⋃

n=1
Dn\D0 allows us to show

only that f (
∞
⋃

n=1
Dn)⊂D∞. For any fixed x∈

∞
⋃

n=1
Dn, there is m∈N so that x∈Dm. Thus, by

definition of Dn we obtain

f (x)∈ f (Dm)⊂Dm+1.

Consequently,

f (
∞
⋃

n=1

Dn)⊂
∞
⋃

n=1

Dn ⊂D∞.

We finish the proof by taking S=D∞.

The next lemma is a convex set version of Banach spaces of Lemma 2.1.

Lemma 2.2. Suppose that D is a nonempty closed convex subset of a Banach space X, and f :
D→ D is a continuous mapping apart from a countable set D0 ⊂ D. Then there exists a closed
separable convex subset C of D such that C is f -invariant, i.e, f (C)⊂C.

Proof. Choose any closed convex separable subset D1 of D with D1⊃D0. Then we see

f (D1)≡{ f (x) : x∈D1}

is also separable. Hence,
D2≡co[D1∪ f (D1)]

is closed convex and separable, where co(A) stands for the closed convex hull of A, i.e.
the closure of the set

co(A)≡

{

n

∑
j=1

λjaj : n∈N, aj ∈A, λj ≥0 with
n

∑
j=1

λj =1

}

.

Generally, let
Dn+1=co[Dn∪ f (Dn)], n∈N.

By an argument as the same as the one of the proof of Lemma 2.1, we observe that (Dn)
is an increasing sequence of closed convex separable subsets of D. Let

D∞=co

[

∞
⋃

n=1

Dn

]

.
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Then D∞ is again closed convex and separable. Since (Dn) is an increasing sequence of

closed convex separable subsets, we see D∞=
∞
⋃

n=1
Dn. Note

D0∪ f (D0)⊂Dn forall n≥1.

Since

f (D∞)= f (
∞
⋃

n=1

Dn\D0)∪ f (D0),

and since
∞
⋃

n=1
Dn\D0 is dense in D∞\D0, continuity of f on

∞
⋃

n=1
Dn\D0 allows us to show

only that f (
∞
⋃

n=1
Dn)⊂D∞. For any fixed x∈

∞
⋃

n=1
Dn, there is m∈N so that x∈Dm. Thus, by

definition of Dn, we obtain
f (x)∈ f (Dm)⊂Dm+1.

Consequently,

f (
∞
⋃

n=1

Dn)⊂
∞
⋃

n=1

Dn ⊂D∞.

Therefore, C≡D∞ is f -invariant.

Recall that a nonempty closed convex set D of a Banach space X is said to have the
(respectively, weak) fixed point property, if for every nonempty closed bounded (respec-
tively, weakly compact) convex subset C of D, and for every non-expansive mapping f
defined on C, there is a point x0∈C so that f (x0)= x0. The following theorem states that
the fixed point property and the weak fixed point property are separably determined.

Theorem 2.1. Both the fixed point property and the weak fixed point property of a closed convex
set D of a Banach space X (in particular, the whole Banach space X) are separably determined, i.e.
the (respectively, weak) fixed point property is equivalent to that for each nonempty closed bounded
(respectively, weakly compact) convex separable subset C of D, and for every non-expansive map-
ping f defined on C, there is a point x0∈C so that f (x0)= x0.

Proof. Suppose that E is a nonempty closed convex subset of a Banach space X, that D⊂E
is a nonempty closed bounded convex set (respectively, nonempty weakly compact con-
vex set), and that f is a non-expansive mapping defined on D. Since f is 1-Lipschitz, it
necessarily fulfills that assumption of f defined as in Lemma 2.2. Therefore, there is a
nonempty closed separable convex (respectively, weakly compact) subset C of D, so that
f |C (the restriction of f from D to C) is also a self-mapping. If f |C has a fixed point, then f
has a fixed point. Thus, we have shown that if every non-expansive mapping defined on
a nonempty closed bounded (respectively, weakly compact) convex separable subset has
a fixed point, then every such mapping defined on a nonempty closed bounded (respec-
tively, weakly compact) convex subset has a fixed point, which complete our proof.
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Remark 2.1. Given a Banach space X, we use C to denote a specific class of nonempty
closed bounded convex sets of X, and M(C) a specific class of self-mappings defined on
some element C of C. Following are fundamental examples of C and M(C).

C={C⊂X nonempty, closedboundedandconvex}, and

M(C)={ f : C→C nonexpansiveforsomeC∈C};

W={C⊂X nonempty, weaklycompactandconvex} and

M(W)={ f : C→C nonexpansiveforsomeC∈W};

C={C⊂X nonempty, closedboundedandconvex}, and

T(C)={ f : C→C continuousaffineforsomeC∈C}.

We say that X has the fixed point property for M(C) provided every f ∈ M(C) has
a fixed point. There are many possibilities. For example, if C consists of all nonempty
closed bounded convex set of X, and if M(C) denotes class of non-expansive self-mappings,
each of which defined on an element C of C, then X has the fixed point property for M(C)
is equivalent to that X has the fixed point property; if W consists of all nonempty weakly
compact convex set of X, and if M(W) denotes class of non-expansive self-mappings,
each of which defined on an element C of W , then X has the fixed point property for
M(W) is equivalent to that X has the weak fixed point property. Keeping this in mind,
we can observe that the following more general result is true.

Theorem 2.2. Suppose that X is a Banach space. Then the fixed point property for M(C) is
separably determined if every element in M(C) is continuous off at most a countable subset of its
domain.

The following notions can be found in [11] and [12]. A closed convex set D of a Banach
space X is said to have the super fixed point property provided that every nonempty
closed bounded convex set C of another Banach space Y has the fixed point property
whenever C is finitely representable in D, i.e. for all ε > 0 and for any affinely inden-
pendent finite set {x0,x1,··· ,xn}⊂C (which is equivalent to x1−x0,x1−x0,··· ,xn−x0 are
linearly independent) there exist an affinely independent finite set {y0,y1,··· ,yn}⊂D and
an affine mapping T : span{x0,x1,··· ,xn}→span{y0,y1,··· ,yn} so that

Tco{x0,x1,··· ,xn}=co{x0,x1,··· ,xn}, and

(1−ε)‖x−y‖≤‖Tx−Ty‖≤ (1+ε)‖x−y‖, x,y∈co{x0,x1,··· ,xn}.

Analogously, we have the following theorem.

Theorem 2.3. A nonempty closed convex set of a Banach space X has the super fixed point
property if and only if every nonempty closed convex separable subset of it has the super fixed
point property.



O. Li, L. Su and Q. Wei / J. Math. Study, 49 (2016), pp. 33-41 39

3 A simple proof of c0(Γ) admitting the weak fixed point prop-

erty

As an application of Theorem 2.4, and making use of Maurey’s classical theorem [3], we
give a simple proof c0(Γ) has the weak fixed point property for any set Γ. Before doing
this, we need some preparation.

Recall a mapping U from a Banach space X to another Banach space Y is said to be a
linear isometry provided

‖Ux−Uy‖=‖x−y‖, forall x,y∈X.

In this case, we also say that X is linear isometric to a subspace of Y. If the linear isometry
is surjective, then we call the two spaces “isometric”. Since U is linear, the equation above
is equivalent to

‖Ux‖=‖x‖, forall x∈X.

The following result states that every separable subset of the space c0(Γ) is again in
c0.

Lemma 3.1. Every separable subspace of c0(Γ) is linearly isometric to a subspace of c0.

Proof. Suppose that E is a separable subspace of c0(Γ). We choose any sequence {xn}n∈N⊂
E, which is a dense sequence in E; and put

Γn=suppxn ≡{γ∈Γ : xn(γ) 6=0} and Γ∞=∪∞
n=1Γn.

Then by definition of c0(Γ), Γn is countable for every n ∈ N. Therefore, Γ∞ is again a
countable subset of Γ. Let χA be the mapping sending every set A⊂Γ to its characteristic
function, i.e. χA(x)= 1, if x∈ A; = 0, otherwise, and let PA : c0(Γ)→ c0(Γ) be the natural
projection defined by

PA(x)= x◦χA =(x(γ)·χA(γ))γ∈Γ.

Then
PΓ∞

(c0(Γ))= c0(Γ)◦χΓ∞
={x◦χΓ∞

: x∈ c0(Γ)}

is linearly isometric to c0(Γ∞). Since Γ∞ is countable, it is linearly isometric to c0, if the
cardinality α= ∞ of Γ∞; and to ℓα

∞ if ∞> α. Therefore, c0(Γ∞) is linearly isometric to a
subspace of c0. Therefore, up to a linear isometry, we have

c0⊃ c0(Γ∞)∼= c0(Γ)·χΓ∞
⊃{xn},

where c0(Γ∞)∼=c0(Γ)◦χΓ∞
means that c0(Γ)◦χΓ∞

is linearly isometric to c0(Γ∞). This and
density of {xn} in E deduce

c0⊃ c0(Γ∞)∼= c0(Γ)·χΓ∞
⊃ (xn)=E,

i.e. E is linearly isometric to a subspace of c0.
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We shall use Maurey’s theorem [3] that c0 has the weak fixed point property to prove
the following theorem.

Theorem 3.1. For any nonempty set Γ, c0(Γ) has the weak fixed point property.

Proof. By Maurey’s theorem, without loss of generality, we can assume that Γ is uncount-
able. Suppose that D is a nonempty weakly compact convex subset of c0(Γ), and f :D→D
is a non-expansive mapping. According to Lemma 2.2, there is a nonempty closed con-
vex separable subset C of D so that f |C is again a self-mapping on C. Since D is a weakly
compact convex subset, C is weakly compact. Since C is separable, E≡span(C) is a sepa-
rable subspace of c0(Γ). According to Lemma 3.1, there is a linear isometry T from E into
c0. Since T is linear and continuous, it is necessarily weakly continuous. Consequently,
TC is again convex, separable and weakly compact in c0. Let

F=T◦ f ◦T−1 : TC→TC.

Then it satisfies that for all x,y∈TC

‖F(x)−F(y)‖=‖T◦ f ◦T−1(x)−T◦ f ◦T−1(y)‖

=‖ f ◦T−1(x)− f ◦T−1(y)‖

≤‖T−1(x)−T−1(y)‖

=‖x−y‖.

Thus, F is also a nonexpansive mapping from the nonempty weakly compact convex set
TC to itself. By Maurey’s fixed point theorem there exists y0 ∈TC so that F(y0)= y0; or,
equivalently, f (x0)= x0, where x0=T−1y0 ∈C. We have shown that there is a fixed point
x0∈C⊂D for the mapping f |C, hence, f .
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