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Abstract

A new framework based on the curved Riemannian manifold is proposed to calculate

the numerical solution of the Lyapunov matrix equation by using a natural gradient de-

scent algorithm and taking the geodesic distance as the objective function. Moreover, a

gradient descent algorithm based on the classical Euclidean distance is provided to compare

with this natural gradient descent algorithm. Furthermore, the behaviors of two proposed

algorithms and the conventional modified conjugate gradient algorithm are compared and

demonstrated by two simulation examples. By comparison, it is shown that the conver-

gence speed of the natural gradient descent algorithm is faster than both of the gradient

descent algorithm and the conventional modified conjugate gradient algorithm in solving

the Lyapunov equation.
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1. Introduction

Lyapunov matrix equation is widely used in many fields, such as linear control systems,

stochastic analysis of dynamical systems and circuit simulations, see, e.g., [1–5]. The solution

of this equation has been paid more and more attention in the computational mathematics field,

see, e.g., [6–9]. In particular, Li and White presented a Cholesky factor-alternating direction

implicit algorithm to generate a low-rank approximation solution of the Lyapunov equation [10].

Vandereycken and Vandewalle provided a Riemannian optimization approach to compute the

low-rank solution of the Lyapunov equation [11]. Jbilou proposed a preconditioned Krylov

method for solving Lyapunov matrix equations [12]. Deng, Bai and Gao designed iterative

orthogonal direction methods according to the fundamental idea of the classical conjugate

direction method for the standard system of linear equations to obtain the Hermitian solutions

of the linear matrix equations AXB = C and (AX,XB) = (C,D) [13]. Recently, Su and Chen
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proposed a modified conjugate gradient algorithm (MCGA) to solve Lyapunov matrix equations

and some other linear matrix equations, which seemed to be the generalized result of [14].

Up to date, however, there has been few investigation on the solution problem of the Lya-

punov matrix equation in the view of Riemannian manifolds. Note that this solution is a

positive definite symmetric matrix in a global asymptotically stable linear system and the set

of all the positive definite symmetric matrices can be taken as a manifold. Thus, it is more

convenient to investigate the solution problem with the help of these attractive features on the

manifold. To address such a need, we focus on a numerical method to solve the Lyapunov

matrix equation on the manifold.

In the present paper, with the help of a natural gradient descent algorithm (NGDA), a new

framework is proposed to calculate the numerical solution of the Lyapunov matrix equation

on the manifold of positive definite matrices. Moreover, the geodesic distance on the curved

Riemannian manifold is taken as the objective function of the NGDA. In order to compare with

this NGDA, a gradient descent algorithm (GDA) based on the classical Euclidean distance

is provided. Furthermore, the behaviors of NGDA, GDA and the conventional MCGA are

compared and demonstrated by two simulation examples.

The remainder of the paper is organized as follows. The geometric structures on the manifold

of positive definite matrices are introduced in Section 2. Then the GDA and NGDA are proposed

to solve the Lyapunov matrix equation in Sections 3. Finally, two numerical examples are

provided to compare the convergence speed and the computation consumption of the presented

algorithms and the MCGA.

2. Preliminaries

Let M(n) be the set of n × n real matrices and GL(n) be its subset containing only non-

singular matrices. Then GL(n) is a Lie group, namely, a group which is also a differentiable

manifold and on which the operations of the group multiplication and the inverse are smooth.

The tangent space at the identity of GL(n) is called the corresponding Lie algebra, which is

a space which consists of all linear transformations, namely M(n). The set of all the n × n

positive definite symmetric matrices can be taken as a manifold, denoted by PD(n). Manifold

PD(n) is not a Lie subgroup of GL(n), while it is a submanifold of GL(n). On manifold PD(n),

we can define different metrics so that different geometry structures are established on this

manifold. In this section, we briefly introduce these geometric structures which will be used in

the following sections. More details can be found in [15–18].

2.1. Tangent space on manifold PD(n)

The exponential map of a matrix U ∈ M(n) is given, as usual, by the convergent series

exp(U) =

∞
∑

m=0

Um

m!
. (2.1)

The inverse map, i.e., the logarithmic map is defined as follows

log(V ) =
∞
∑

m=1

(−1)m+1 (V − I)m

m
, (2.2)

for V in a neighborhood of the identity I of GL(n).
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Let us denote the space of all n × n symmetric matrices by Sym(n). We recall that the

exponential map from Sym(n) to PD(n) is one-to-one and onto. In other words, the exponential

map of any symmetric matrix is a positive definite symmetric matrix, and the logarithm map

of any positive definite symmetric matrix is a symmetric matrix. As PD(n) is an open subset

of Sym(n), for each B ∈ PD(n) we identify the tangent space TBPD(n) at B with Sym(n).

2.2. Frobenius inner product and Euclidean distance

By regarding PD(n) as a subset of the Euclidean space M(n), the Frobenius inner product

on it is defined by

〈B1, B2〉 = tr(BT
1 B2), (2.3)

where B1, B2 ∈ PD(n) and tr denotes the trace of the matrix. The associated norm ‖B‖F =

〈B,B〉
1

2 is used to define the Euclidean distance on M(n) by

dF (B1, B2) = ‖B1 −B2‖F . (2.4)

Moreover, the geodesic passing through B in the direction of W ∈ Sym(n) with respect to the

Frobenius inner product is given by

γ(t) = B + tW, 0 ≤ t < δ, (2.5)

for some δ > 0 and this geodesic stays within manifold PD(n) under the condition that t is not

too large.

2.3. Riemannian metric and geodesic distance

On manifold PD(n), the Riemannian metric at the point B is defined by

gB(X,Y ) = gI(B
−1X,B−1Y ) = tr(B−1XB−1Y ), (2.6)

where I denotes the identity matrix, X,Y ∈ Sym(n). The positive definiteness of this metric

is guaranteed by

gB(X,X) = tr(B−
1

2XB−
1

2B−
1

2XB−
1

2 ). (2.7)

Then, the manifold PD(n) with the Riemannian metric (2.6) becomes a Riemannian manifold.

Moreover, it is a curved manifold since this metric is invariant under the group action of GL(n).

Next, we discuss how to define the geodesic distance on manifold PD(n) with the Riemannian

metric (2.6). Let [0, 1] be a closed interval in R, and φ : [0, 1] → PD(n) be a sufficiently smooth

curve on manifold PD(n). We define the length of φ(t) by

ℓ(φ(t)) :=

∫ 1

0

√

gφ(t)(φ̇(t), φ̇(t))dt =

∫ 1

0

√

tr(φ(t)−1φ̇(t))2dt. (2.8)

The geodesic distance between two matrices B1 and B2 on manifold PD(n) is the infimum of

lengths of curves connecting them, namely

dg(B1, B2) := inf
{

ℓ(φ)|φ : [0, 1] → PD(n), φ(0) = B1, φ(1) = B2

}

. (2.9)

It transpires that the length-minimizing smooth curves are geodesics, so the infimum of (2.9) is

achieved by a geodesic. The Hopf-Rinow theorem implies that manifold PD(n) is geodesically
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complete [19]. This means that the geodesic for the interval [0, 1] can be extended to (−∞,+∞).

Therefore, for any given pair B1, B2 ∈ PD(n), we can find a geodesic γ(t) such that γ(0) = B1

and γ(1) = B2, by taking the initial velocity as

γ̇(0) = B
1

2

1 log(B
−

1

2

1 B2B
−

1

2

1 )B
1

2

1 ∈ Sym(n).

Moreover, the geodesic γ(t) can be expressed as

γ(t) = B
1

2

1 exp(t log(B
−

1

2

1 B2B
−

1

2

1 ))B
1

2

1 = B
1

2

1 (B
−

1

2

1 B2B
−

1

2

1 )tB
1

2

1 . (2.10)

Obviously, the geodesic (2.10) is entirely contained in the manifold. Therefore, according to

(2.8), the geodesic distance dg(B1, B2) can be computed explicitly by

dg(B1, B2) = ‖ log(B
−

1

2

1 B2B
−

1

2

1 )‖F =

(

n
∑

i=1

ln(λi)
2

)
1

2

, (2.11)

where λi are the eigenvalues of B
−

1

2

1 B2B
−

1

2

1 . Since λi are also the eigenvalues of B−1
1 B2, we

need not to invoke the matrix square root B
−

1

2

1 in practice.

3. Algorithms for the Solution of Lyapunov Matrix Equation

It is well known that a linear time-invariant autonomous system

ẋ = Ax, (3.1)

where A ∈ R
n×n, is global asymptotically stable, if for any given positive definite symmetric

matrix Q, there exists a positive definite symmetric matrix P satisfying the Lyapunov matrix

equation

ATP + PA+Q = 0, (3.2)

and the scalar function f(t) = x(t)TPx(t) is strictly decreasing. We assume that all the

eigenvalues of the system matrix A have negative real parts. It ensures that system (3.1) is

global asymptotically stable and the solution P for equation (3.2) is unique [20].

Firstly, we define the coordinate system of manifold PD(n) as follows. Let Epq be the matrix

with one as the (p, q)th element and the zero otherwise. Then the basis matrices of the vector

space Sym(n) are defined by

Eu = Eτ(p,q) =

{

Epq p = q,

Epq + Eqp p < q,
(3.3)

where τ is an appropriate rule to assign integers to the pair (p, q), namely, τ(p, q) = u, for

1 ≤ u ≤ N := n(n+ 1)/2. Thus we can represent any P (θ) ∈ PD(n) as

P (θ) =
N
∑

i=1

θiEi, θ
i ∈ R, (3.4)

uniquely, where θ = (θ1, θ2, ..., θN ) belongs to an open subset of RN that satisfies the positive

definiteness. Hence, θ can be considered as a global coordinate system of the N -dimensional

manifold PD(n) [21].

Then, our purpose is to seek a matrix P (θ) on manifold PD(n) such that the matrix

−(ATP (θ)+P (θ)A) is as close as possible to the given matrix Q. Therefore, the key points for

designing an algorithm are as follows:
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1. The difference between the given positive definite matrix Q and the matrix −(ATP (θ) +

P (θ)A) is calculated, for an arbitrary matrix P (θ) on manifold PD(n).

2. A gradient descent algorithm is used to adjust the coordinate θ so that the difference can

be as small as possible.

3.1. Gradient descent algorithm

In this subsection, we provide the traditional gradient descent algorithm(GDA) to solve

equation (3.2). The difference between Q and −(ATP (θ)+P (θ)A) is expressed by the Euclidean

distance

JF (θ) = d2F

(

Q,−(ATP (θ) + P (θ)A)
)

= tr
(

(Q+ATP (θ) + P (θ)A)2
)

, (3.5)

which is taken as an objective function. Note that there is a unique solution for the Lyapunov

equation (3.2), so the minimum of JF (θ) must exist uniquely. Then the coordinate of the

solution for the Lyapunov matrix equation (3.2) can be obtained by the closest point. That is

the point θ∗ such that

θ∗ = argmin
θ

JF (θ). (3.6)

Moreover, the matrix P (θ∗) =
∑N

i=1 θ
i
∗
Ei is the solution of the equation (3.2).

Lemma 3.1. ([22]) LetX(t) be am×n differentiable function-valued matrix of the real variable

t for all t in its domain, then we have that

d

dt
tr(X(t)TX(t)) = 2 tr(X(t)T

d

dt
X(t)). (3.7)

Furthermore, if C1 ∈ R
l×m, C2 ∈ R

n×l are constant matrices, then

d

dt
tr(C1X(t)C2) = tr(C1

d

dt
X(t)C2). (3.8)

Moreover, if m = n and X(t) is an invertible matrix which does not have eigenvalues on the

closed negative real line, then

d

dt
tr
(

logX(t)
)

= tr(X(t)−1 d

dt
X(t)). (3.9)

Now, we use the GDA to minimize JF (θ), which is widely applied in Euclidean spaces.

Theorem 3.1. The iterative process based on the Euclidean distance JF (θ) is given by

θt+1 = θt − ςt∇JF (θt), (3.10)

where ςt denotes the step size and the components of the gradient ∇JF (θt) satisfy

∂

∂θi
JF (θt) = 2 tr

(

(Q +ATP (θt) + P (θt)A)(A
TEi + EiA)

)

. (3.11)

Proof. In this case, manifold PD(n) is regarded as a subset of M(n). Then, for the coordinate

θ of the matrix P (θ), the squared length of a small incremental vector dθ connecting θ and θ+dθ

is given by

‖dθ‖2F =

N
∑

i=1

(dθi)
2, (3.12)
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where dθi are the components of dθ. The gradient descent direction is defined by the vector dθ

that minimizes JF (θ + dθ) under the constraint

‖dθ‖2F = ε2, (3.13)

for a sufficiently small constant ε. We put

dθ = εa, (3.14)

and search a that minimizes

JF (θ + dθ) = JF (θ) + ε∇JF (θ) · a, (3.15)

under the constraint

‖a‖2F =

N
∑

i=1

a2i = 1. (3.16)

By the Lagrange method, we have

∂

∂ai
(∇JF (θ)

T a− λaTa) = 0, (3.17)

where λ is Lagrange multiplier, so it is obtained that

a =
1

2λ
∇JF (θ). (3.18)

From (3.14), we have the iterative formula of the GDA that

θt+1 = θt − ςt∇JF (θt), (3.19)

where ςt is the step size. And, since the matrix ATP (θ)+P (θ)A is symmetric, we take advantage

of (3.7) and (3.8) to get the components of the gradient ∇JF (θt)

∂

∂θi
JF (θt) =2 tr

(

(Q+ATP (θt) + P (θt)A)
∂

∂θi
(Q+ATP (θt) + P (θt)A)

)

=2 tr
(

(Q+ATP (θt) + P (θt)A)(A
TEi + EiA)

)

.
(3.20)

This completes the proof of Theorem 3.1. �

In Theorem 3.1, we use the negative gradient −∇JF (θ) to determine a new search direction

in each iteration, so that the objective function JF (θ) reduces gradually. Now, we discuss the

convergence of the sequence θt generated by (3.10).

Corollary 3.1. If

0 < ςt <
2JF (θt)

‖∇JF (θt)‖2
, (3.21)

then the sequence θt generated by (3.10) converges to the coordinate θ∗ of the solution P (θ∗) for

equation (3.2). Moreover, the gradient ∇JF (θ) exists the unique zero point θ∗.
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Proof. Subtracting θ∗ from both sides of (3.10) gives

θt+1 − θ∗ = θt − θ∗ − ςt∇JF (θt). (3.22)

It can be verified that

‖θt+1 − θ∗‖
2
F = ‖θt − θ∗‖

2
F − 2ςt(θt − θ∗)

T∇JF (θt) + 2ς2t ‖∇JF (θt)‖
2
F

=
(

1− 2ςt
(θt − θ∗)

T∇JF (θt)

‖θt − θ∗‖2F
+ 2ς2t

‖∇JF (θt)‖
2
F

‖θt − θ∗‖2F

)

‖θt − θ∗‖
2
F .

(3.23)

It follows from (3.11) that

(θt − θ∗)
T∇JF (θt) = 2JF (θt). (3.24)

Thus, we can rewrite (3.23) as

‖θt+1 − θ∗‖
2
F =

(

1− 2ςt
2JF (θt)

‖θt − θ∗‖2F
+ 2ς2t

‖∇JF (θt)‖
2
F

‖θt − θ∗‖2F

)

(‖θt − θ∗‖
2
F ). (3.25)

If (3.21) is true, then we have

‖θt+1 − θ∗‖F < ‖θt − θ∗‖F , (3.26)

which implies that the sequence θt converges to the coordinate θ∗.

In fact, if there exists θ′
∗
6= θ∗ such that the iterative process stops, then it means ∇JF (θ

′

∗
) =

0. However, from (3.24), we get that

(θ′
∗
− θ∗)

T∇JF (θ
′

∗
) = 2JF (θ

′

∗
) = 0, (3.27)

which shows that P (θ′
∗
) is another solution of Eq. (3.2). That is contradictory to the uniqueness

of the solution for Eq. (3.2). Consequently, θ∗ is the unique zero point of ∇JF (θ). This

completes the proof of Corollary 3.1. �

From the above discussion, we formulate the GDA as follows and denote the spectral radius

of the matrix by ρ(·).

Algorithm 3.1. (GDA) For the coordinate θ = (θ1, θ2, . . . , θN ) of manifold PD(n), the

gradient descent algorithm is given by

1. Set θ0 = (θ10 , θ
2
0, . . . , θ

N
0 ) as the coordinate of an initial input matrix P (θ0) and choose

a desired tolerance ε0 > 0.

2. Compute ρ(ATP (θt) + P (θt)A+Q).

3. If ρ(ATP (θt) + P (θt)A+Q) < ε0 then stop.

4. Update the coordinate vector θ by θt+1 = θt − ςt∇JF (θt) and go to step 2.

3.2. Natural gradient descent algorithm

On a curved Riemannian manifold, the GDA can not give the steepest descent direction of

the objective function. In order to overcome this difficulty, Amari et. al. proposed a natural

gradient descent algorithm(NGDA) to give the steepest descent direction on manifolds [23], as

follows.



100 X.M. DUAN, H.F. SHUN AND Z.N. ZHANG

Lemma 3.2. Let {u ∈ R
n} be a parameter space on which a function L(u) is defined. The

iterative process in the steepest descent direction on a Riemannian manifold is given by

ut+1 = ut − ηtG(ut)
−1∇L(ut), (3.28)

where ηt denotes the step size, G(ut)
−1 = (gij(ut)) is the inverse of the Riemannian metric

G(ut) = (gij(ut)) and

∇L(u) =
( ∂

∂u1
L(u),

∂

∂u2
L(u), · · · ,

∂

∂un

L(u)
)

. (3.29)

This algorithm has been well used into some fields, such as the neural network and the

optimal control [24–27]. Here we apply it to solve the Lyapunov equation (3.2) on the manifold

PD(n) with the Riemannian metric (2.6).

Note that the geodesic distance is the shortest one on a Riemannian manifold, so we take

the geodesic distance between Q and −(ATP (θ)+P (θ)A) as the objective function Jg(θ), which

is in the form of

Jg(θ) = d2g(Q,−(ATP (θ) + P (θ)A))

=
∥

∥

∥
log(Q−

1

2 (−ATP (θ) − P (θ)A)Q−
1

2 ))
∥

∥

∥

2

F
. (3.30)

Therefore, the coordinate θ∗ of the solution P (θ∗) for the Lyapunov equation (3.2) is obtained

by minimizing the objective function Jg(θ), namely

θ∗ = argmin
θ

Jg(θ). (3.31)

Now, the NGDA is used to minimize Jg(θ) and the iterative formula is as follows.

Theorem 3.2. On manifold PD(n), the iterative process in the steepest descent direction is

given by

θt+1 = θt − ηtG(θt)
−1∇Jg(θt), (3.32)

where the components of gradient ∇Jg(θt) satisfy

∂

∂θi
Jg(θt)

= 2 tr
(

log(Q−1(−ATP (θt)− P (θt)A))(A
TP (θt) + P (θt)A)

−1(ATEi + EiA)
)

. (3.33)

Proof. On the manifold PD(n) with the Riemannian metric (2.6), the squared length of a

small incremental vector dθ connecting θ and θ + dθ is

‖dθ‖2g =

N
∑

i,j=1

(gij(θ)dθidθj)
2. (3.34)

By the Lagrange method, we have

∂

∂ai
(∇Jg(θ)

Ta− λaTG(θt)a) = 0, (3.35)

so it can be obtained that

a =
1

2λ
G(θt)

−1∇Jg(θ). (3.36)
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Therefore, the iterative formula is

θt+1 = θt − ηtG(θt)
−1∇Jg(θt). (3.37)

Furthermore, combining Lemma 3.1 and the properties of the matrix trace, the components of

∇Jg(θt) are

∂

∂θi
Jg(θt)

= 2 tr
(

log(Q−
1

2 (−ATP (θt)− P (θt)A)Q
−

1

2 ))
∂

∂θi
(log(Q−

1

2 (−ATP (θt)− P (θt)A)Q
−

1

2 ))
)

= 2 tr
(

log(Q−1(−ATP (θt)− P (θt)A))(A
TP (θt) + P (θt)A)

−1(ATEi + EiA)
)

.

(3.38)

This completes the proof of Theorem 3.2. �

Now, we discuss the convergence of the sequence θt generated by (3.32).

Corollary 3.2. If

0 < ηt <
2
∑n

i=1(λ
i
t − 1) logλi

t

∇Jg(θt)TG(θt)−1∇Jg(θt)
, (3.39)

then the sequence θt generated by (3.32) converges to the coordinate θ∗ of the solution P (θ∗)

for equation (3.2), where λi
t(i = 1, . . . , n) are the eigenvalues of Q

1

2 (−ATP (θt)−P (θt)A)
−1Q

1

2 .

Moreover, the gradient ∇Jg(θ) exists the unique zero point θ∗.

Proof. From (3.32) and (3.34), we can obtain the equalities that

‖θt+1 − θ∗‖
2
g

= ‖θt − θ∗‖
2
g − 2ηt(θt − θ∗)

T∇Jg(θt) + 2η2t∇Jg(θt)
TG(θt)

−1∇Jg(θt)

=
(

1− 2ηt
(θt − θ∗)

T∇Jg(θt)

‖θt − θ∗‖2g
+ 2η2t

∇Jg(θt)
TG(θt)

−1∇Jg(θt)

‖θt − θ∗‖2g

)

‖θt − θ∗‖
2
g. (3.40)

Then, using the properties of the matrix trace, we have

(θt − θ∗)
T∇Jg(θt)

= 2 tr
(

log(Q
1

2 (−ATP (θt)− P (θt)A)
−1Q

1

2 ))(Q
1

2 (−ATP (θt)− P (θt)A)
−1Q

1

2 − I)
)

). (3.41)

Since Q
1

2 (−ATP (θt) − P (θt)A)
−1Q

1

2 is symmetric positive definite, its orthogonal similarity

diagonalization can be represented as UΛUT , where U is the orthogonal matrix and Λ =

diag(λ1
t , . . . , λ

n
t ) satisfying that λi

t > 0, i = 1, . . . , n. Thus, the formula (3.41) can be rewritten

as

(θt − θ∗)
T∇Jg(θt) = 2

n
∑

i=1

(λi
t − 1) logλi

t, (3.42)

where it is easy to verify that (λi
t − 1) logλi

t > 0, for i = 1, . . . , n. Combining (3.40), if (3.39)

holds, then

‖θt+1 − θ∗‖g < ‖θt − θ∗‖g, (3.43)

so the sequence θt generated by (3.32) converges to the coordinate θ∗.
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In addition, we assume that ∇Jg(θ
′

∗
) = 0 at the point θ′

∗
(6= θ∗) such that the iterative

progress (3.32) terminates. Then, according to (3.42), the following equalities are valid

(θ′
∗
− θ∗)

T∇Jg(θ
′

∗
) = 2

n
∑

i=1

(λ′i
∗
− 1) logλ′i

∗
= 0, (3.44)

where λ′

∗
are the eigenvalues of matrix Q

1

2 (−ATP (θ′
∗
) − P (θ′

∗
)A)−1Q

1

2 . Note that the second

equality of (3.44) is equivalent to

n
∏

i=1

λ′i
∗

λ′i

∗
−1

= 1, (3.45)

so we have that λ′1
∗

= λ′2
∗

= . . . = λ′n
∗

= 1. That means Jg(θ
′

∗
) = 0, which is contrary to the

uniqueness of the solution for the Lyapunov Eq. (3.2). Therefore, the gradient ∇Jg(θ) exists

the unique zero point θ∗. This completes the proof of Corollary 3.2. �

Based on the above discussion, we give the NGDA for the numerical solution of Eq. (3.2).

Algorithm 3.2. (NGDA) For the coordinate θ = (θ1, θ2, . . . , θN ) of manifold PD(n), the

natural gradient descent algorithm is given by

1. Set θ0 = (θ10 , θ
2
0, . . . , θ

N
0 ) as the coordinate of an initial input matrix P (θ0) and choose

a desired tolerance ε0 > 0.

2. Compute ρ(ATP (θt) + P (θt)A+Q).

3. If ρ(ATP (θt) + P (θt)A+Q) < ε0 then stop.

4. Update the coordinate vector θ by θt+1 = θt − ηtG(θt)
−1∇Jg(θt) and go to step 2.

Comparing with the GDA, the NGDA needs less number of iterations since the steepest

descent direction on manifold is used. However, the iterative procedure in the NGDA seems

more complicated than that in the GDA, so the computational cost in the NGDA during each

step may be more than that in the GDA. Especially, the Riemannian metric matrix G and its

inverse are time-consuming in each iteration. Also the size of the matrix G is N × N in the

NGDA, so the space for storing this large matrix reaches O(N2). In a word, the convergence

speed of the NGDA is faster, at the same time the computational cost is higher.

4. Simulations

Two simulation examples are given to demonstrate the behaviors of the GDA, the NGDA and

the traditional MCGA. An error criterion used in these simulations is ρ(ATP (θt)+P (θt)A+Q) <

10−10.

Example 4.1. First consider a fifth-order 2-input distillation column example with the system
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matrix A given by [28]















−0.1094 0.0628 0 0 0

1.3060 −2.1320 0.9807 0 0

0 1.5950 −3.1490 1.5470 0

0 0.0355 2.6320 −4.2570 1.8550

0 0.0023 0 0.1636 −0.1625















.

With Q = I, we apply the GDA, the NGDA and the MCGA respectively to solve this equation

by taking the coordinate of the 5-order identity matrix as the initial value θ0.

Fig. 4.1 shows the step-sizes versus the iterations in the NGDA. It is found that, the

iterations will reduce gradually as the step size changing from 0.1 to 0.24, while this algorithm

will be divergent once the step size is bigger than 0.24. Thus this optimal step size is convenient

to be obtained experimently. Also, the optimal step size corresponding to the best convergence

speed in each algorithm is used in the following simulations.

Fig. 4.2 shows the comparison of the convergence speeds of the GDA, the NGDA and

the MCGA. It can be found that the NGDA has the fastest convergent speed among three

algorithms and needs 33 iterations to obtain the numerical solution as follows















82.1354 6.4974 5.0137 3.4720 42.1676

6.4974 0.9097 0.6326 0.3871 3.8474

5.0137 0.6326 0.6853 0.3942 3.3242

3.4720 0.3871 0.3942 0.3557 2.4709

42.1676 3.8474 3.3242 2.4709 31.2834















.

However, the MCGA and the GDA needs 53 and 104 steps to realize the same accuracy,

respectively. Moreover, the three curves in Fig. 4.2 shows that this NGDA and the GDA

possess the more steady convergence than the MCGA.

For this given error criterion, the elapsed time for the NGDA takes 0.57 second, and less

time about 0.04 and 0.31 second are required in the case of the MCDA and GDA, respectively.

We find that the NGDA is time-consuming in dealing with the metric matrix G(θt). How-

ever, it shows that an adaptive natural gradient algorithm [29,30] can be attempted to reduce

0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

Ite
ra

tio
n

Step−size

Fig. 4.1. Step-sizes versus iterations in the NGDA.
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Fig. 4.2. Comparison of convergence speeds of the GDA, the NGDA and the MCGA.

computation time of this metric matrix, but such matters will not be discussed in the present

paper.

Example 4.2. A 20-dimensional Lyapunov matrix equation with a small rank perturbation is

also considered in our simulation. The system matrix A ∈ R
20×20 satisfies Reλi(A) < 0(1 ≤

i ≤ 20). Then we select a 2× 10 random matrix B satisfying rank(B) = 2 and set the matrix

Q = I+BTB, this means that Q is a small rank perturbation of the identity matrix. Simulation

indicates that the numerical solution of this equation can be obtained after 54 iterations using

the NGDA, while the MGDA and the GDA need 87 and 299 steps, respectively. Therefore, the

convergence speed of the NGDA is still the fastest one among three algorithms.

Also, the computing time take 24.89, 0.04 and 11.23 seconds in NGDA, the MGDA and the

GDA respectively. As shown in the previous analysis, n=20 means the size of the metric matrix

G(θt) in the NGDA is 210× 210, this leads to the higher expenses in computation time.

In addition, when considering the effect with and without the small rank perturbation,

simulation shows the iterative steps in the case without this perturbation are 52, 84 and 296

in the NGDA, the MCGA and the GDA respectively, and the computation time elapses 24.11,

0.03 and 10.03 seconds respectively. The convergence speeds and the computation time are

no big difference, so the NGDA, the MCGA and the GDA are not sensitive to the small rank

perturbation problem of the matrix Q.

5. Summary

Two algorithms, based on the gradient descent with Euclidean distance and the natural

gradient descent with the geodesic distance on the manifold of positive definite matrices re-

spectively, are developed to calculate the numerical solution for the Lyapunov matrix equation.

And, the behaviors of two provided algorithms and the traditional modified conjugate gradient

algorithm are compared and demonstrated by two simulation examples. It is shown that the

convergence speed of the natural gradient descent algorithm is faster than both of the gradient

descent algorithm and the modified conjugate gradient algorithm.
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