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Abstract

This paper is to study the convergence and superconvergence of rectangular finite

elements under anisotropic meshes. By using of the orthogonal expansion method, an

anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular ele-

ments with all the possible shape function spaces are considered, which cover the Inter-

mediate families, Tensor-product families and Serendipity families. It is shown that the

anisotropic interpolation error estimates hold for any order Sobolev norm. We extend

the convergence and superconvergence result of rectangular finite elements to arbitrary

rectangular meshes in a unified way.
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1. Introduction

The nondegenerate assumption or regular assumption on the meshes is a basic condition in

the classical convergence analysis of the finite element methods, see [9,16]. Consider a bounded

convex domain Ω ⊂ R2. Let Jh be a family of meshes of Ω. Denote the diameter of an element

K and the diameter of the inscribed circle of K by hK and ρK , respectively, h = max
K∈Jh

hK . It

is assumed in the classical finite element theory that

hK

ρK
≤ C, ∀ K ∈ Jh, (1.1)

where C is a positive constant independent of K and the function considered.

We will consider the error estimates of finite elements in degenerate meshes. Then the reg-

ular assumption is no longer valid in this case. Conversely, degenerate elements (or anisotropic

elements) are characterized by hK

ρK
→ ∞ as h → 0. Error estimates for degenerate elements

can go back to the works by Babus̆ka and Aziz [6] and by Jamet [19]. Especially, anisotropic
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interpolation error estimates of Lagrange elements have been proved by several authors with

different methods, interested readers are referred to [4, 5, 12–14, 20, 30, 34, 35, 38] and refer-

ences therein. Especially, anisotropic triangle (tetrahedra) Lagrange finite elements have been

extensively studied in the above mentioned references.

As we know, compared with triangular elements, the choice of shape functions of rectangular

elements have much more possibilities than them and thus the constructions of rectangular

finite elements are in many forms. Up to now, only a few elements with bi−k tensor product

polynomial space are treated by the above mentioned references, see e.g., [1,3–5,14,33,39], there

are still some gaps in the anisotropic error estimates of the Lagrange rectangular elements. In

fact, there are three popular polynomial bases for rectangular meshes in engineering practice:

(1) Tensor-product spaces; (2) Serendipity families; (3) Intermediate elements. Most of these

elements are still missing in anisotropic error estimates.

On the other hand, superconvergence in finite element methods has been highlighted for more

than thirty years both in the engineering and scientific computing applications. It is a powerful

tool in improving the accuracy, and plays an important role in the a posteriori error estimate,

mesh refinement and adaptivity, see and references therein. For the literature, interested readers

can refer to the recent works [8, 15, 18, 21–23, 28, 36, 41, 42], the books [7, 11, 24, 27, 43, 44]

and the references therein. Note that all the superconvergence results obtained in the above

references are studied on regular meshes. There are few superconvergence results are obtained on

anisotropic meshes, see [26,31,32,39,40] etc. The problems left to us is: Do the superconvergence

results of rectangular finite elements with arbitrary order still hold under anisotropic meshes?

In this paper, we show that the interpolation operators of Lagrange rectangular elements ob-

tained by orthogonal expansions satisfy the anisotropic properties, and prove their anisotropic

error estimates on arbitrary rectangular meshes. The analysis covers the Intermediate families,

Tensor-product families and Serendipity families in a unified way. Furthermore, the superap-

proximation results between the interpolations and the finite element solutions are obtained for

the Intermediate families, Tensor-product families on arbitrary rectangular meshes.

Lastly, we recall some notations and terminology (or refer to [10, 16]). For a bounded

Lipschitz domain Ω ⊂ R2, let (·, ·) denote the usual L2 -inner product and ‖u‖r,p,Ω (resp.

|u|r,p,Ω) be the usual norm (resp. semi-norm) for the Sobolev space W r,p(Ω), which are defined

as

‖v‖m,p,Ω =



∫

Ω

∑

|α|≤m

|Dαv|p




1

p

, |v|m,p,Ω =



∫

Ω

∑

|α|=m

|Dαv|p




1

p

.

When p = 2, denote W 2,r(Ω) by Hr(Ω). We shall also denote by Pl(G) the space of polynomials

on G of degrees no more than l. Throughout this paper, C is a positive constant independent

of the mesh diameter, hK

ρK
and the function considered.

2. Anisotropic Interpolations via Orthogonal Expansions

In this paper, we consider the following large family of rectangular elements defined on the

reference square K̂ = {x̂ = (ξ, η)T ∈ R
2 : −1 < ξ, η < 1}:

Qm(k) = Span{ξiηj : (i, j) ∈ Ik,m, 1 ≤ m ≤ k}, (2.1)

Ik,m is an index set satisfies

{(i, j)|0 ≤ i, j ≤ k, i+ j ≤ m+ k} ⊂ Ik,m ⊂ {(i, j)|0 ≤ i, j ≤ k}. (2.2)
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Obviously, the above family consists of all the possible shape spaces of rectangular elements.

Based on [7], it can be divided into three groups:

i) Tensor-product families Q2(k), k ≥ 2, it consists of the special case bi-k−th order finite

element space Qk(k);

ii) Intermediate families Q1(k);

iii) Serendipity families, the shape space is between Pk and Q1(k) with its index set

Sk =



p̂|p̂(ξ, η) =

∑

0≤i+j≤k

αi,jξ
iηj + αk,1ξ

kη + α1,kξη
k



 .

Taking the third order (k = 3) rectangular finite elements as an example, there are four

different elements based on its structure ( cf. [9]), i.e.,

Q3(3) = P3(K̂)⊕ Span{ξη3, ξ3η, ξ2η2, ξ2η3, ξ3η2, ξ3η3},

Q2(3) = P3(K̂)⊕ Span{ξη3, ξ3η, ξ2η2, ξ2η3, ξ3η2},

Q1(3) = P3(K̂)⊕ Span{ξη3, ξ3η, ξ2η2},

S3 = P3(K̂)⊕ Span{ξη3, ξ3η, ξ2η2}.

(2.3)

The corresponding node type degree of freedoms N of them are illustrated in Fig. 2.1 and Fig.

2.2.
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Fig. 2.1. The element Q3(3) (left) and Q2(3) (right).
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Fig. 2.2. The element Q1(3) (left) and S3 (right).

If k is bigger, it will contain more finite elements with the same order. This phenomena is

quite different from the triangular part. Note that the anisotropic interpolation error estimates

for triangular finite elements with arbitrary order have been proved in [13, 35]. Concerning

the rectangular finite elements, only anisotropic interpolation error estimates for a few tensor

product elements of Qk(k) have been obtained in the literatures.
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For our subsequent analysis, we introduce the Legendre orthogonal polynomials defined on

the interval E = [−1, 1]

Ln(t) = c1(n)
dn(t2 − 1)n

dt
, c1(n) =

1

2nn!
, n = 0, 1, 2, · · · , (2.4)

which has n vanishing points on E, which is the so-called Gauss points. On the two end-points

of E, we have

Ln(±1) = (±1)n,

see e.g., [29, 37].

Integral of the Legendre polynomials on (−1, t) yields the so-called Lobatto polynomials

φn+1(t) =

∫ t

−1

Ln(t)dt = c1(n)
dn−1(t2 − 1)n

dt
, n = 1, 2, · · · (2.5)

with φ0(t) = 1 and φn(±1) = 0 for n ≥ 2.

It is known that φn(t) is a n − th order polynomial and has n different zero points on E,

which is also called as Lobatto points. Lobatto polynomials have the following quasi-orthogonal

property:
∫

E

φm(t)φn(t)dt =

{
6= 0, if m− n = 0,±2,

0, else m,n.
(2.6)

Consider a suitable smooth function u, we do an orthogonal expansion by Legendre polynomials

for du
dt
,

du

dt
=

∞∑

j=1

bjLj−1(t), (2.7)

with

bj = (j −
1

2
)

∫

E

du

dt
Lj−1(t)dt, j = 1, 2, · · · .

Integrating the both hand sides of (2.7) on (−1, t), we get

u = b0 +
∞∑

j=0

bj+1φj+1(t).

Now we can get a n order polynomial expansion of u, which is denoted by

un =

n∑

j=0

bjφj(t). (2.8)

In order to determine the values of b0, we assume u is C0 continuous on the end-points t = ±1,

then

u(1) = b0 + b1, u(−1) = b0 − b1,

thus we can derive

b0 =
1

2
(u(1) + u(−1)), b1 =

1

2

∫

E

du

dt
L0(t) dt =

1

2
(u(1)− u(−1)).
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Now we are in the position to present the anisotropic interpolation operators. For a suitable

smooth function u, we can get an expansion with respect to the variable ξ by fixing the variable

η on the reference element,

û(ξ, η) =

k+1∑

i=0

bi(η)φi(ξ) +Rk+1(ξ, η), (2.9)

where

b0(η) =
û(1, η) + û(−1, η)

2
, b1(η) =

û(1, η)− û(−1, η)

2
,

bi(η) = (i−
1

2
)

∫ 1

−1

∂û

∂ξ
Li(ξ)dξ, i ≥ 1, Rk+1(ξ, η) =

∞∑

i=k+2

bi(η)φi(ξ).

In the next step, by using of the Lobatto polynomials expansion of bi(η), we get

b0(η) =

k+1∑

j=0

b0,jφj(η) +R0,k+1(η),

b1(η) =

k∑

j=0

b1,jφj(η) +R1,k(η),

bi(η) =
∑

(i,j)∈Ik,m

bi,jφj(η) +Ri,k+m−i(η), 2 ≤ i ≤ k,

(2.10)

where

b0,0 =
û1 + û2 + û3 + û4

4
,

b0,j =
2j − 1

4

∫ 1

−1

(
∂û(1, η)

∂η
+

∂û(−1, η)

∂η

)
Lj−1(η)dη, j ≥ 1,

b1,j =
2j − 1

4

∫

K̂

∂2û(ξ, η)

∂ξ∂η
Lj−1(η)dξdη, j ≥ 1,

bi,0 =
2i− 1

4

∫ 1

−1

(
∂û(ξ, 1)

∂ξ
+

∂û(ξ,−1)

∂ξ

)
Li−1(ξ)dξ, i ≥ 1,

bi,1 =
2i− 1

4

∫

K̂

∂2û(ξ, η)

∂ξ∂η
Li−1(ξ)dξdη, i ≥ 1,

bi,j =
(2i− 1)(2j − 1)

4

∫

K̂

∂2û(ξ, η)

∂ξ∂η
Li−1(ξ)Lj−1(η)dξdη, i, j ≥ 1,

(2.11)

where ûi, i = 1, 2, 3, 4, is the function values of û on the four vertices. Then we can define the

anisotropic interpolation on the reference element by

Π̂kû =
∑

(i,j)∈Ik,m

bi,j(û)φi(ξ)φj(η) ∈ Qm(k), (2.12)

where we write bi,j(û) = bi,j for clarity that it is a functional of û.

It can be checked that the interpolated function constructed as above on the general rect-

angular mesh is a C0 continuous function. In fact, we only need to show that the value of

the above interpolated function on each edge of the elements only depends on the degrees of
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freedom of this edge. For simplicity, we only prove this fact on the edge η = 1. Since

Π̂û(ξ, 1) =
1

2
(û(1, 1) + û(−1, 1)) +

k∑

i=1

(
i−

1

2

)
φi(ξ)

∫ 1

−1

∂û(ξ, 1)

∂ξ
Li−1(ξ)dξ,

is a k−th order polynomial with respect to the variable ξ, it can be seen easily that the

function Π̂û(ξ, 1) is only depends on the nodal values defined on the two endpoints of this edge

and the tangential derivative along the same edge between the two adjacent elements, which

ensures the continuity of Π̂û(ξ, 1). Moreover, since φk(±1) = 0 for the case k ≥ 2, we have

Π̂û(âi) = û(âi), i = 1, 2, 3, 4, which means that it is continuous on the four vertexes.

3. Convergence Analysis on Arbitrary Rectangular Meshes

For the sake of convenience, let Ω ⊂ R2 be a convex polygon composed by a family of

rectangular meshes Jh which need not satisfy the regularity assumptions. ∀K ∈ Jh, denote

the barycenter of element K by (xK , yK), the length of edges parallel to x-axis and y-axis by

2hK1, 2hK2 respectively, hK = max{hK1, hK2}, h = max
K∈Jh

hK , α = (α1, α2), h
α
K = hα1

K1h
α2

K2.

There exists a unique mapping FK : K̂ −→ K defined as
{
x = xK + hK1ξ,

y = yK + hK2η.
(3.1)

From now on, we fix the integer k ≥ 1 and define the k−th order rectangular Lagrange finite

element space:

V k
h = {vkh ∈ C0(Ω); vkh|K ◦ FK ∈ Qm(k), ∀K ∈ Jh, vkh|∂Ω = 0}. (3.2)

Define the interpolation operator Πk
h : C0(Ω) −→ V k

h as

Πk
h|K = ΠK , Πk

K = Π̂k ◦ F−1
K , ∀K ∈ Jh.

We consider the following general second-order elliptic boundary value problem
{
−∆u = f, in Ω,

u = 0, on ∂Ω,
(3.3)

with f ∈ L2(Ω). Let V = H1
0 (Ω), then the weak form of (3.3) is:

{
Find u ∈ V, such that

a(u, v) = f(v), ∀ v ∈ V,
(3.4)

where

a(u, v) =

∫

Ω

∇u∇v dxdy, f(v) =

∫

Ω

fv dxdy.

The finite element approximation of (3.4) reads
{
Find uk

h ∈ V k
h , such that

a(uk
h, v

k
h) = f(vkh), ∀ vkh ∈ V k

h .
(3.5)

To analyze its convergence on anisotropic meshes, we first show that the interpolation op-

erator defined in the last section satisfies the following anisotropic interpolation property.
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Theorem 3.1. Suppose α = (α1, α2) ∈ Ik,m is a multi-index with |α| > 0 satisfies 0 ≤ |α| <

k+1 and û ∈ C0(K̂) satisfies D̂αû ∈ Hk+1−|α|(K̂). Then there exists a generic constant C > 0

such that

‖D̂α(û − Π̂kû)‖0,K̂ ≤ C|D̂αû|
k+1−|α|,K̂ . (3.6)

If |α| ≥ k + 1, then

‖D̂α(û− Π̂kû)‖0,K̂ ≤ C


 ∑

β∈DαIk,m

‖D̂α+βû‖2
0,K̂




1

2

, (3.7)

where DαIk,m := {(i− α1, j − α2)|(i, j) ∈)Ik,m}.

Proof. We first consider the case |α| < k + 1. By (2.12), there holds

D̂αΠ̂kû =
∂nΠ̂kû

∂ξα1∂ηα2

=
∑

(i,j)∈Ik,m , i≥α1,j≥α2

bi,j(û)
dα1φi(ξ)

dξα1

dα2φj(η)

dηα2

. (3.8)

In the following, we need to give a detailed estimate of the term bi,j . Concerning the case α1 = 0,

D̂αΠ̂û only consists of b0,j, j ≥ α2. Integrating it by parts and noticing that dα2(t2−1)α1

dtα2
|±1 = 0

when α2 < α1, we can derive

|b0,j(û)| =

∣∣∣∣
c1(j − 1)(2j − 1)

4

∫ 1

−1

(
∂û(1, η)

∂η
+

∂û(−1, η)

∂η

)
dj−1(η2 − 1)j−1

dηj−1
dη

∣∣∣∣

=

∣∣∣∣
c1(j − 1)(2j − 1)

4

∫ 1

−1

(
∂α2 û(1, η)

∂ηα2

+
∂α2 û(−1, η)

∂ηα2

)
dj−α2 (η2 − 1)j−1

dηj−α2

dη

∣∣∣∣

≤ C

∥∥∥∥
∂α2 û

∂ηα2

∥∥∥∥
0, 1

2
,∂K̂

≤ C

∥∥∥∥
∂α2 û

∂ηα2

∥∥∥∥
k+1−|α|,K̂

= C‖D̂αû‖
k+1−|α|,K̂ , (3.9)

where we have used the Cauchy-Schwarz inequality and the trace theorem [17, Theorem I.1.5].

The case α2 = 0 can be treated similarly. For the case α1 6= 0, α2 6= 0, we have

|bi,j(û)| =

∣∣∣∣
c1(i − 1)c1(j − 1)(2i− 1)(2j − 1)

4
∫

K̂

∂2û

∂ξ∂η

di−1(ξ2 − 1)i−1

dξi−1

dj−1(η2 − 1)j−1

dηj−1
dξdη

∣∣∣∣

=

∣∣∣∣
c1(i − 1)c1(j − 1)(2i− 1)(2j − 1)

4
∫

K̂

∂nû

∂ξα1∂ηα2

di−α1(ξ2 − 1)i−1

dξi−α1

dj−α2 (η2 − 1)j−1

dηj−α2

dξdη

∣∣∣∣

≤ C

∥∥∥∥
∂|α|û

∂ξα1∂ηα2

∥∥∥∥
k+1−|α|,K̂

= C‖D̂αû‖
k+1−|α|,K̂ . (3.10)

Then (3.6) can be obtained by the anisotropic interpolation theorem [4, 12].

Concerning (3.7), since |α| ≥ k + 1, then we only need to treat the term bi,j with α1 6=

0, α2 6= 0. In a similar way as (3.10), (3.7) can be proved by minor adaption. �
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Remark 3.1. In fact, the proof in the above theorem using a similar argument as in [2,4,13,14],

but only the bi−k tensor product polynomial space and the case |α| ≤ k +1 are studied in the

above references.

Then we can derive the anisotropic interpolation results by using of Theorem 3.1.

Theorem 3.2. Suppose Jh is an arbitrary rectangular mesh, then under the same hypoth-

esises of Theorem 3.1, if n < k + 1, we have

|u−Πk
hu|n,Ω ≤ C


 ∑

K∈Jh

∑

|β|=k+1−n

h
2β
K |Dβu|2n,K




1

2

. (3.11)

Otherwise, if n ≥ k + 1, we have

|u−Πk
hu|n,Ω ≤ C


 ∑

K∈Jh

∑

β∈DαIk,m

h
2β
K |Dβu|2n,K




1

2

. (3.12)

Proof. By (3.6), we have

|u−Πk
hu|n,Ω =

( ∑

K∈Jh

|u −Πk
Ku|2n,K

) 1

2

=


 ∑

K∈Jh

∑

|α|=n

‖Dα(u−Πk
Ku)‖20,K




1

2

=


 ∑

K∈Jh

∑

|α|=n

h−2α
K (hK1hK2)‖D̂

α(û − Π̂kû)‖2
0,K̂




1

2

≤ C


 ∑

K∈Jh

∑

|α|=n

h−2α
K (hK1hK2)|D̂

αû|2
k+1−n,K̂




1

2

≤ C


 ∑

K∈Jh

∑

|α|=n

∑

|β|=k+1−n

h
2β
K ‖Dα+βu‖20,K




1

2

,

which implied the desired assertion (3.11). Concerning (3.12), it can be proved by a similar

argument. �

Remark 3.2. Theorems 3.1 and 3.2 show that the anisotropic property and interpolation er-

ror estimates of rectangular elements hold for any order derivative, which seems to be more

impressive than that in the existing references, cf. [4, 5, 35].

Remark 3.3. In fact, it is possible to derive an explicit bounds of the constant C in the right-

hand side of Theorem 3.2 by using of an explicit estimate of the expansion remainders, which

is not the main scope in this paper and is omitted here.

The convergence results of the finite element methods is the following theorem.
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Theorem 3.3. Suppose u ∈ Hk+1(Ω) and uk
h is the unique solution of (3.4) and (3.5), respec-

tively, then under arbitrary rectangular mesh, we have

|u− uk
h|1,Ω ≤ Chk|u|k+1,Ω, (3.13)

‖u− uk
h‖0,Ω ≤ Chk+1|u|k+1,Ω. (3.14)

Proof. According to the Cea’s Lemma (cf. [10, 16]) we have

|u− uk
h|1,Ω ≤ C inf

vk
h
∈V k

h

|u− vkh|1,Ω ≤ C|u −Πk
hu|1,Ω,

then the energy norm error estimate (3.13) can be obtained easily by applying the anisotropic

interpolation error estimate (3.11) with n = 1. Concerning the L2 norm error estimate (3.14),

it can be proved by the usual Aubin-Nitsche-duality argument. Since the process is standard,

we omit them. �

4. Superconvergence Analysis on Arbitrary Rectangular Meshes

In this section, we will show the superapproximation result of the Lagrange rectangular

elements under arbitrary rectangular mesh. In fact, superconvergence result of some Lagrange

rectangular elements on anisotropic meshes is not new in the literature. Superconvegence

analysis of some low order tensor-product rectangular elements have been done in [25, 26, 39].

However, our analysis in the following will cover the tensor-product families and intermedi-

ate families of rectangular elements with arbitrary order, based on the anisotropic properties

of the interpolations proved in the last section. To start with, we prove the following weak

superconvergent estimates.

Lemma 4.1. Suppose u ∈ Hk+2(Ω) ∩ H1
0 (Ω), then for the k−th order interpolated function

Πk
hu and ∀vkh ∈ V k

h , we have the following superconvergent weak estimates under arbitrary

rectangular meshes

∣∣∣∣
∫

K

∂(u−Πk
hu)

∂x

∂vkh
∂x

dxdy

∣∣∣∣ ≤ C


 ∑

|β|=k+1

h
2β
K |Dβu|21,K




1

2 ∣∣∣vkh
∣∣∣
1,K

, ∀K ∈ Jh, (4.1)

∣∣∣∣
∫

K

∂(u−Πk
hu)

∂y

∂vkh
∂y

dxdy

∣∣∣∣ ≤ C


 ∑

|β|=k+1

h
2β
K |Dβu|21,K




1

2 ∣∣∣vkh
∣∣∣
1,K

, ∀K ∈ Jh. (4.2)

Proof. We only need to prove (4.1) and (4.2) can be proved in a similar way because of the

symmetric structure of the finite element space.

A scaling argument of the left hand side of (4.1), we get

∫

K

∂(u−Πk
hu)

∂x

∂vkh
∂x

dxdy =
hK1

4hK2

∫

K̂

∂(û− Π̂kû)

∂ξ

∂v̂kh
∂ξ

dξdη. (4.3)

Without loss of generality, we may assume

v̂kh =
∑

(i,j)∈Ik,m

ci,jφi(ξ)φj(η) ∈ Qm(k, ),
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where ci,j is a functional of v̂kh, then we have

∂Π̂kû

∂ξ
=

∑

(i,j)∈Ik,m, i≥1

bi,j(û)φi(ξ)φj(η) =
∑

(i,j)∈Ik,m , i≥1

bi,j(û)Li−1(ξ)φj(η), (4.4)

∂v̂kh
∂ξ

=
∑

(i,j)∈Ik,m , i≥1

ci,jLi−1(ξ)φj(η). (4.5)

From the definition of bi,j in (2.11), we know that it is a functional of ∂û
∂ξ

. Setting Ŵ = ∂û
∂ξ

,

then ∂Π̂kû
∂ξ

is a functional of Ŵ and can be written as

∂Π̂kû

∂ξ
= F̂1(Ŵ ) =

∑

(i,j)∈Ik,m, i≥1

di,j(Ŵ )Li−1(ξ)φj(η), (4.6)

with

d1,0(Ŵ ) =
1

4

∫ 1

−1

(
Ŵ (ξ, 1) + Ŵ (ξ,−1)

)
dξ,

di,j(Ŵ ) =
(2i− 1)(2j − 1)

4

∫

K̂

∂Ŵ (ξ, η)

∂η
Li−1(ξ)Lj−1(η)dξdη, i, j ≥ 1. (4.7)

In fact, F̂1(Ŵ ) can be regarded as a functional of Ŵ on H1(K̂) by the trace theorem, i.e., it

satisfies that

|F̂1(Ŵ )| ≤ C‖Ŵ‖1,K̂ . (4.8)

Since

û− Π̂kû = 0, ∀û ∈ Qm(k),

with m ≥ 1, we have

Ŵ − F̂1(Ŵ ) = 0, ∀Pk(K̂) \ {Lk(ξ)}.

In a further step, it can be checked easily that

F̂1(φk(ξ)) =
1

2

∫ 1

−1

Lk(ξ)dξ = 0,

then by the orthogonal property of Legendre polynomials, we derive that

∫

K̂

(Ŵ − F̂1(Ŵ ))
∂v̂kh
∂ξ

dξdη = 0, (4.9)

when Ŵ = Lk(ξ) and so (4.9) holds for all Ŵ ∈ Pk(K̂).

We define the functional

B1

(
Ŵ ,

∂v̂kh
∂ξ

)
=

∫

K̂

(Ŵ − F̂1(Ŵ ))
∂v̂kh
∂ξ

dξdη. (4.10)

It can be checked easily that
∣∣∣∣∣B1

(
Ŵ ,

∂v̂kh
∂ξ

)∣∣∣∣∣ ≤ C ‖Ŵ‖1,K̂

∥∥∥∥∥
∂v̂kh
∂ξ

∥∥∥∥∥
0,K̂

. (4.11)



Convergence and Superconvergence Analysis of Lagrange Rectangular Elements 179

An application of the Bramble-Hilbert lemma, there exists a constant C only depends on

K̂ such that
∣∣∣∣∣B1

(
Ŵ ,

∂v̂kh
∂ξ

)∣∣∣∣∣ ≤ C inf
p∈Pk(K̂)

‖Ŵ + p‖1,K̂

∥∥∥∥∥
∂v̂kh
∂ξ

∥∥∥∥∥
0,K̂

≤ C


 ∑

|β|=k+1

‖D̂βŴ‖2
0,K̂




1

2
∥∥∥∥∥
∂v̂kh
∂ξ

∥∥∥∥∥
0,K̂

= C


 ∑

|β|=k+1

∥∥∥∥D̂β ∂û

∂ξ

∥∥∥∥
2

0,K̂




1

2
∥∥∥∥∥
∂v̂kh
∂ξ

∥∥∥∥∥
0,K̂

, (4.12)

which, together with the scaling argument, yields that
∣∣∣∣∣

∫

K̂

∂(û− Π̂kû)

∂ξ

∂v̂kh
∂ξ

dξdη

∣∣∣∣∣ =
∣∣∣∣∣B1

(
Ŵ ,

∂v̂kh
∂ξ

)∣∣∣∣∣

≤ C
hK2

hK1


 ∑

|β|=k+1

h
2β
K

∥∥∥∥Dβ ∂u

∂x

∥∥∥∥
2

0,K




1

2 ∥∥∥∥
∂vkh
∂x

∥∥∥∥
0,K

≤ C
hK2

hK1


 ∑

|β|=k+1

h
2β
K |Dβu|21,K




1

2 ∣∣∣vkh
∣∣∣
1,K

. (4.13)

Then the desired result (4.1) follows from (4.3) and (4.12). The proof is completed. �

Based on Lemma 4.1, we can prove the following anisotropic superclose result.

Theorem 4.1. Suppose u ∈ Hk+2(Ω) ∩ H1
0 (Ω) and uk

h ∈ V k
h are the solutions of (3.4) and

(3.5), respectively, under the arbitrary rectangular meshes, there holds

|Πk
hu− uk

h|1,Ω ≤ C


 ∑

|β|=k+1

h
2β
K |Dβu|21,K




1

2

. (4.14)

Proof. Since V k
h ⊂ V , then by (3.4) and (3.5), we get

a(u− uk
h, v

k
h) = 0, ∀ vkh ∈ V k

h , (4.15)

which, together with the fact Πk
hu− uk

h ∈ V k
h and an application of Lemma 4.1 yields

|Πk
hu− uk

h|
2
1,Ω = a(Πk

hu− uk
h,Π

k
hu− uk

h)

= a(Πk
hu− u,Πk

hu− uk
h)

=
∑

K∈Jh

(∫

K

∂(u−Πk
hu)

∂x

∂(Πk
hu− uk

h)

∂x
dxdy

+

∫

K

∂(u−Πk
hu)

∂y

∂(Πk
hu− uk

h)

∂y
dxdy

)

≤ C
∑

K∈Jh


 ∑

|β|=k+1

h
2β
K |Dβu|21,K




1

2 ∣∣∣Πk
hu− uk

h

∣∣∣
1,K
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≤ C
∑

K∈Jh


 ∑

|β|=k+1

h
2β
K |Dβu|21,K




1

2 ∣∣∣Πk
hu− uk

h

∣∣∣
1,Ω

. (4.16)

Then (4.14) follows from (4.16). �

Remark 4.1. The superconvergence result (4.14) is an anisotropic estimate in the following

senses. Firstly, it dose ont impose any condition on the mesh and is valid on arbitrary rectan-

gular mesh. The classical superconvergence order O(hk+1) can be recovered easily from (4.14).

Secondly, the convergence estimate is directional with respect to the two mesh diameters hK1

and hK2 and the different element scales are exploited.

5. Conclusions

In this paper, we give a unified analysis for the convergence of the large class of rectangular

finite elements under arbitrary rectangular mesh. All the estimates in this work are obtained

in anisotropic sense, which enrich the anisotropic error estimates for the finite elements of In-

termediate families, Serendipity families and some of the tensor-product families. Furthermore,

the anisotropic superapproximation results for the finite elements of tensor-product families

and Intermediate families of arbitrary order are proved under arbitrary rectangular meshes.

The global superconvergence results and the point superconvergent structures of these rectan-

gular finite elements under anisotropic meshes are not addressed in this paper. These results,

together with extensive numerical tests, will be reported in our future work.
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