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Abstract

In this paper, a new Schwarz method called restricted additive Schwarz method (RAS)

is presented and analyzed for a kind of nonlinear complementarity problem (NCP). The

method is proved to be convergent by using weighted maximum norm. Besides, the effect

of overlap on RAS is also considered. Some preliminary numerical results are reported to

compare the performance of RAS and other known methods for NCP.
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1. Introduction

We consider the following finite-dimensional nonlinear complementarity problem (NCP):

find u ∈ Rn such that

u ≥ φ, F (u) ≥ 0, (u− φ)TF (u) = 0, (1.1)

where φ ∈ Rn, F = Au+f(u) with an M−matrix A, and ∂f/∂u ≥ 0. This kind of problem can

be arised from free boundary problem with nonlinear source terms, e.g. the diffusion problem

involving Michaelis-Menten or second-order irreversible reactions, see, e.g., [8,15].

It is well known that domain decomposition method is a kind of very important method

for PDEs since 1980’s. It has many advantages, for example it is easy to be parallelized on

parallel machines, and it is effective for large scale problem. Moreover, the convergence rate

will not be deteriorated with the refinement of the mesh when it is applied to discretized

differential equations. Researches in this field for the solution of variational inequalities and

complementarity problems were also fruitful in the last decade. We refer the reader to [1,2,9-

11,13,16,17,20-22] and the extensive references therein. In [6], a new variant Schwarz method

called restricted additive Schwarz method (RAS) was proposed for general sparse linear systems.

This method attracts much attention, since it reduces communication time while maintaining

the most desirable used in practice. Up to now, much effort have been made to study the

convergence theory for RAS, and extended RAS for some other kinds of linear systems, see,

e.g., [4,5,7,9] and the references therein. [18] presented the RAS method for a kind of NCP, but
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the authors did not prove the convergence of the proposed method. The purpose of this paper

is to extend the RAS method to NCP (1.1) and establish its convergence results. Moreover, we

discuss the effect of overlap on proposed method.

The paper is organized as follows: in Section 2, we give some preliminaries and present the

RAS method. In Section 3, we estimate the weighted max-norm bounds for iteration errors and

establish global convergence theorem for RAS. In Section 4, we discuss the effect of overlap on

the RAS method. In Section 5, we present some numerical results and give some conclusions

in Section 6.

2. Restricted Additive Schwarz Method

In this section, we present the RAS method for solving problem (1.1). As in [6] and [9], we

consider m nonoverlapping subspaces Vi,0, i = 1, · · · ,m, which are spanned by columns of the

identity I over Rn. Let S = {1, 2, · · · , n} and let

S = ∪m
i=1Si,0

be a partition of S into m disjoint, nonempty subsets. Let {Si,1} be the one-overlap partition of

S which is obtained by adding those indices to Si,0 which correspond to nodes lying at distance

1 or less from those nodes corresponding to Si,0. Using the idea recursively, we can define

δ−overlap partition of S, S = ∪m
i=1Si,δ, where Si,0 ⊂ Si,δ, with δ level of overlaps with its

neighboring subsets. Hence, we have a nested sequence of larger sets Si,δ with

Si,0 ⊆ Si,1 ⊆ Si,2 ⊆ · · · ⊆ S = {1, 2, · · · , n}. (2.1)

For δ > 0, the sets Si,δ are not necessarily pairwise disjoint, i.e., we have introduced overlap.

This approach is adequate in discretizations of PDEs where the indices correspond to the nodes

of the discretization mesh, and also is valid for problem (1.1).

Let ni,δ = |Si,δ| denote the cardinality of the set Si,δ. For each nested sequence from (2.1),

we can find a permutation matrix πi on {1, 2, · · · , n} with the property that for all δ ≥ 0 we

have πi(Si,δ) = {1, 2, · · · , ni,δ}. Let Ri,δ : Rn → Rni,δ be the restriction operator. Ri,δ is an

ni,δ × n matrix with rank (Ri,δ)= ni,δ whose rows are precisely those row j of the identity for

which j ∈ Si,δ. Its transpose RT
i,δ : Rni,δ → Rn is a prolongation operator. Formally, such a

matrix Ri,δ can be expressed as

Ri,δ = [Ii,δ O]πi (2.2)

with Ii,δ the identity on Rni,δ . We define the weighting matrices

Ei,δ = RT
i,δRi,δ = πT

i

[

Ii,δ O

O O

]

πi ∈ Rn×n (2.3)

and the subspaces

Vi,δ = range(Ei,δ), i = 1, 2, · · · ,m.

Note the inclusion Vi,δ ⊆ Vi,δ
′ for all δ ≤ δ

′

, and in particular, Vi,0 ⊆ Vi,δ for all δ ≥ 0.

Furthermore, the images of the bases of Vi,δ under the prolongation operator RT
i,δ are linearly

independent unit elements in Rn, and we can verify the images of RT
i,δ with the subspaces Vi,δ.

For matrix A, let Ai,δ = Ri,δAR
T
i,δ denote the restriction of A to Vi,δ. By (2.2), we have matrix
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Ai,δ is an ni,δ × ni,δ principal submatrix of A. Let π ∈ Rn×n be a permutation matrix, we

denote by Aπ = πAπT . Noting that

Ai,δ = Ri,δAR
T
i,δ = [Ii,δ O]Aπi

[Ii,δ O]T ∈ Rni,δ×ni,δ

is the ni,δ × ni,δ submatrix of Aπi
, we can represent matrix Aπi

in the form

Aπi
=

[

Ai,δ Gi,δ

Hi,δ Aic,δ

]

. (2.4)

And it is convenient to represent vectors

uπi
=

[

ui,δ

uic,δ

]

, φπi
=

[

φi,δ

φic,δ

]

,

where ui,δ = Ri,δu ∈ Rni,δ and φi,δ = Ri,δφ ∈ Rni,δ .

The natural partial ordering ≤ between matrices A = (aij), B = (bij), of the same size is

defined componentwise, i.e., A ≤ B iff aij ≤ bij for all i, j. If A ≥ O we call A nonnegative.

If all entries of A are positive, we say that A is positive and write A > O. This notation and

terminology carries over to vectors as well.

Definition 2.1. ([3, 9]) Consider the splitting A = M −N ∈ Rn×nwith M nonsingular. This

splitting is said to be

(i) regular if M−1 ≥ O and N ≥ O,

(ii) M -splitting if M is an M−matrix and N ≥ O.

Note that

Aic,δ = [O Iic,δ]πiAπ
T
i [O Iic ,δ]

T ,

where Iic,δ is the (n− ni,δ)× (n− ni,δ) identity matrix. Let

Mi,δ = πT
i

[

Ai,δ O

O Aic,δ

]

πi, (2.5)

Ni,δ = Mi,δ −A. Since A is an M−matrix and any principal submatrix of an M−matrix is also

an M−matrix (see [3]), it is easy to verify that A = Mi,δ −Ni,δ is an M−splitting of A, and

hence it is also a regular splitting.

It follows from (2.3) and (2.5) that

Ei,δM
−1
i,δ = RT

i,δA
−1
i,δRi,δ. (2.6)

In order to describe the RAS method, we introduce “restricted” operator R̄i,δ as

R̄i,δ = Ri,δEi,0 ∈ Rni,δ×n. (2.7)

The image of R̄T
i,δ = Ei,0R

T
i,δ can be identified with Vi,0, so R̄T

i,δ in the sense that the image of

Vi,δ, is restricted to its subspace Vi,0, the space from the nonoverlapping decomposition. Now,

we can present the RAS method for (1.1). Let u0 be an initial approximation to the solution

of problem (1.1). Generally, at step k, the RAS method consists of the following substeps.
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Algorithm 2.1 (Restricted Additive Schwarz Method).

Substep 1 (restriction): Restrict the vector φ − uk as φk,iδ = Ri,δ(φ − uk). For each

i = 1, 2, · · · ,m, solve in parallel the local problem of finding uk,iδ ∈ Rn such that

uk,iδ
πi

=

[

uk,iδ
ni,δ

uk,iδ
nic,δ

]

,
[

uk,iδ
ni,δ

, uk,iδ
ic,δ

]T

, uk,iδ
nic,δ

= uk
nic,δ

and

uk,iδ
ni,δ

≥ φk,iδ , Ri,δF (uk +RT
i,δu

k,iδ
ni,δ

) ≥ 0, (2.8a)

(uk,iδ
ni,δ

− φk,iδ )TRi,δF (uk +RT
i,δu

k,iδ
ni,δ

) = 0. (2.8b)

Substep 2 (prolongation): Prolongate the approximations of errors by

uk,iδ
e = R̄T

i,δu
k,iδ
ni,δ

, i = 1, 2, · · · ,m. (2.9)

Substep 3 (correction): Correct uk to get

uk+1 = uk +

m
∑

i=1

uk,iδ
e . (2.10)

3. Global Convergence of RAS

In this section, we establish the global convergence for RAS.

Definition 3.1. ([12]) Let ω ∈ Rn be a positive vector. For a vector y ∈ Rn, the weighted

max-norm is defined by

‖y‖ω = max1≤j≤n

∣

∣

∣

∣

yj
ωj

∣

∣

∣

∣

.

For a matrix A ∈ Rn×n, the weighted max-norm is defined by

‖A‖ω = sup‖y‖ω=1{‖Ay‖ω : y ∈ Rn}.

Now, we present some useful lemmas.

Lemma 3.1. For any y ≥ φ, z ≥ φ, and y ≥ z, we have the following inequality:

A(y)−A(z) ≤ F (y)− F (z).

Noting that F (u) = Au+ f(u) and ∂f/∂u ≥ 0, we immediately get the above result.

Lemma 3.2. ([10]) Let P be a matrix, ω be a positive vector, and γ be a positive scalar such

that

Pω ≤ γω. (3.1)

Then ‖P‖ω ≤ γ. In particular, ‖Px‖ω ≤ γ‖x‖ω holds for all x. Moreover, if the strict inequality

holds in (3.1), then we have ‖Px‖ω < γ‖x‖ω.

Lemma 3.3. Let ū be the solution of (1.1) and the sequence {uk} be generated by Algorithm

2.1. If uk = ū, we have uk,iδ
ni,δ

= 0 for all i ∈ {1, · · · ,m}.
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Proof. Since ū − φ ≥ 0, F (ū) ≥ 0 and (ū − φ)TF (ū) = 0, by the nonnegative of Ri,δ, we

have
{

0− φk,iδ = Ri,δ(ū− φ) ≥ 0,

Ri,δF (ū+RT
i,δ0) = Ri,δF (ū) ≥ 0.

(3.2)

Multiplying these two inequalities and noting RT
i,δRi,δ = Ei,δ ≤ I, we have

0 ≤ (0− φk,iδ )TRi,δF (ū +RT
i,δ0) = (ū− φ)TRT

i,δRi,δF (ū) ≤ (ū− φ)TF (ū) = 0.

Proof. This together with (3.2) and the unique solution of (2.8), we have that uk,iδ
ni,δ

= 0 is

the solution of (2.8). �

Lemma 3.4. Let uk
πi

=
[

uk
i,δ, u

k
ic,δ

]T

with uk
i,δ = Ri,δu

k ∈ Rni,δ , where the sequence {uk}

is generated by Algorithm 2.1. Let ykπi
=
[

yki,δ, y
k
ic,δ

]T

with yki,δ = Ri,δy
k ∈ Rni,δ , where

yki,δ ∈ Rni,δ is given by yki,δ = uk
i,δ + uk,iδ

ni,δ
, ykic,δ = uk

ic,δ
. Then yk is the solution of the following

NCP:






yi,δ ≥ φi,δ,

Ri,δF (y) ≥ 0,

(yi,δ − φi,δ)
TRi,δF (y) = 0,

(3.3)

where φi,δ = Ri,δφ.

Proof. By the definition of yki,δ, we have

yki,δ − φi,δ = uk
i,δ + uk,iδ

ni,δ
− φi,δ = uk,iδ

ni,δ
−Ri,δ(φ− uk) = uk,iδ

ni,δ
− φk,iδ .

By the definition of y, we have Ri,δF (y) = Ri,δF (yk) = Ri,δF (uk + RT
i,δu

k,iδ
ni,δ

). Consequently,

(3.3) follows from (2.8). This completes the proof. �

By Lemmas 3.3 and 3.4, we can easily conclude the following result.

Lemma 3.5. Let ū be the solution of (1.1). Then ūi,δ = Ri,δū is the unique solution of the

following NCP:






yi,δ ≥ φi,δ,

Ri,δF (y) ≥ 0,

(yi,δ − φi,δ)
TRi,δF (y) = 0,

where φi,δ = Ri,δφ, yπi
=

[

yi,δ
yic,δ

]

and yi,δ = Ri,δy, yic,δ = ūic,δ.

Lemma 3.6. Let the sequence {uk} be generated by Algorithm 2.1 and ū be the unique solution

of (1.1) with ūπi
=
[

ūi,δ, ūic,δ

]T
, i = 1, 2, · · · ,m. Denote ykπi

=
[

yki,δ, y
k
ic,δ

]T

, where

yki,δ = uk
i,δ + uk,iδ

ni,δ
, ykic,δ = uk

ic,δ
. Then for any δ ≥ 0, we have

Ai,δ|y
k
i,δ − ūi,δ| ≤ −Gi,δ|u

k
ic,δ

− ūic,δ|. (3.4)

Proof. We verify (3.4) by componentwise. Consider an arbitrary index j. We first assume

that

|yki,δ − ūi,δ|j = (yki,δ − ūi,δ)j ,
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which means that

(yki,δ − ūi,δ)j ≥ 0.

Thus, if (yki,δ)j = φj , then (ūi,δ)j = φj . Hence, (3.4) holds for the jth component, since the

left-hand side is nonpositive while the right-hand side is nonnegative.

If (yki,δ) > φj , then by Lemma 3.4, we have

Fj(y
k) = 0. (3.5)

Since ū is the solution of (1.1), we have

Fj(ū) ≥ 0. (3.6)

Thus, by subtracting (3.6) from (3.5), we get

(Ai,δ(y
k
i,δ − ūi,δ))j + (Gi,δ(u

k
ic,δ

− ūic,δ))j ≤ Fj(y
k)− Fj(ū) ≤ 0,

where the first inequality comes from the Lemma 3.1 and (2.4). Hence, we have

(Ai,δ|y
k
i,δ − ūi,δ|)j ≤ −(Gi,δ|u

k
ic,δ

− ūic,δ|)j , (3.7)

since A is an M−matrix. We next assume that

|yki,δ − ūi,δ|j = (ūi,δ − yki,δ)j .

In this case, we have

(yki,δ − ūi,δ)j ≤ 0.

Similarly, we can establish (3.7). Hence inequality (3.4) holds. �

The following lemma gives an estimate of the iteration errors.

Lemma 3.7. Let the sequence {uk} be generated by Algorithm 2.1 and εk := uk − ū, where ū

is the unique solution of (1.1). Then,

|εk+1| ≤ (I −

m
∑

i=1

Ei,0Ei,δM
−1
i,δ A))|ε

k|.

Proof. We deduce from (2.10) that

0 ≤ |εk+1| = |uk+1 − ū|

= |uk +
m
∑

i=1

uk,iδ
e − ū| = |εk +

m
∑

i=1

R̄T
i,δu

k,iδ
ni,δ

|

=

∣

∣

∣

∣

∣

m
∑

i=1

Ei,0π
T
i

([

uk,iδ
ni,δ

O

]

+

[

uk
i,δ − ūi,δ

uk
ic,δ

− ūic,δ

])∣

∣

∣

∣

∣

≤

m
∑

i=1

∣

∣

∣

∣

∣

Ei,0π
T
i

[

yki,δ − ūi,δ

uk
ic,δ

− ūic,δ

] ∣

∣

∣

∣

∣

≤

m
∑

i=1

∣

∣

∣

∣

∣

Ei,0π
T
i

[

−A−1
i,δGi,δ|u

k
ic,δ

− ūic,δ|

uk
ic,δ

− ūic,δ

] ∣

∣

∣

∣

∣

,
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where yki,δ = uk
i,δ + uk,iδ

ni,δ
, the third equality follows from (2.7), and the last inequality follows

from (3.4). We deduce from the above formula that

0 ≤ |εk+1| ≤

m
∑

i=1

|Ei,0π
T
i

[

O −A−1
i,δGi,δ

O Iic,δ

]

||εkπi
|

= |εk| −

m
∑

i=1

Ei,0π
T
i |ε

k
πi
|+

m
∑

i=1

|Ei,0π
T
i

[

O −A−1
i,δGi,δ

O Iic,δ

]

||εkπi
|

= |εk|+
m
∑

i=1

Ei,0π
T
i

[

−Ii,δ −A−1
i,δGi,δ

O O

]

|εkπi
|

= |εk| −

m
∑

i=1

Ei,0R
T
i,δA

−1
i,δ [Ai,δ Gi,δ]|ε

k
πi
|

= |εk| −

m
∑

i=1

Ei,0R
T
i,δA

−1
i,δ [Ii,δ O]Aπi

|εkπi
|

= |εk| −

m
∑

i=1

Ei,0R
T
i,δA

−1
i,δ [Ii,δ O]πiAπ

T
i πi|ε

k|

= |εk| −

m
∑

i=1

Ei,0R
T
i,δA

−1
i,δRi,δA|ε

k|

=

(

I −
m
∑

i=1

Ei,0Ei,δM
−1
i,δ A

)

|εk|,

where the sixth equality follows from (2.2) and the last equality follows from (2.6). �

Theorem 3.1. Let the sequence {uk} be generated by Algorithm 2.1 and εk := uk − ū, where

ū is the unique solution of (1.1). Then we have

0 ≤ |εk+1| ≤ Tθ|ε
k|,

where Tθ = I −
∑m

i=1 Ei,0Ei,δM
−1
i,δ A is a nonnegative matrix. Moreover, for any vector ω =

A−1e with e > 0, there exists a scalar γ ∈ (0, 1) such that

‖Tθ‖ω ≤ γ. (3.8)

Furthermore, {uk} converges to the solution of (1.1) for any initial point u0.

Proof. By Lemma 3.7, we have

|εk+1| =

(

I −
m
∑

i=1

Ei,0Ei,δM
−1
i,δ A

)

|εk| := Tθ|ε
k|.

In order to show ‖Tθ‖ω ≤ γ, we only need to show that Tθ ≥ 0 and Tθω < ω. Clearly, Tθ ≥ 0,
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since

I −

m
∑

i=1

Ei,0M
−1
i,δ A

= I −

m
∑

i=1

Ei,0Ei,δ +

m
∑

i=1

Ei,0Ei,δ

(

I −M−1
i,δ A

)

= I −

m
∑

i=1

Ei,0Ei,δ +

m
∑

i=1

Ei,0Ei,δM
−1
i,δ |Ni,δ|

≥ 0,

where the inequality follows from
∑m

i=1 Ei,0Ei,δ ≤ I, and M−1
i,δ |Ni,δ| ≥ 0.

Next, we show that Tθω < ω with ω = A−1e, where e > 0. It is easy to verify that

Tθω = (I −

m
∑

i=1

Ei,0M
−1
i,δ A)ω = ω −

m
∑

i=1

Ei,0M
−1
i,δ e.

Noting that M−1
i,δ e ≥ 0 since A = Mi,δ−Ni,δ is an M−splitting, we have Tθω < ω. Hence, there

exists a scalar γ ∈ (0, 1), such that ‖Tθ‖ω ≤ γ. Since ρ(Tθ) ≤ ‖Tθ‖ω, Algorithm 2.1 converges

for any initial vector u0. This completes the proof. �

4. The Effect of Overlap on Algorithm 2.1

In this section, we discuss the effect of overlap on Algorithm 2.1. By the definition of

weighted max norm, we immediately have the following result, see also [9].

Lemma 4.1. Let T, T̄ be nonnegative matrices. Assume that Tω ≤ T̄ ω for some vector ω > 0.

Then ‖T ‖ω ≤ ‖T̄‖ω.

Now, we present the following theorem about the effect of overlap on Algorithm 2.1, whose

proof is similar to [8, Theorem 5.2].

Theorem 4.1. Let ω > 0 be any positive vector such that Aω > 0 and TRAS,δ = I −
∑m

i=1 Ei,0M
−1
i,δ A and TRAS,δ̄ = I −

∑m
i=1 Ei,0Ei,δM

−1

i,δ̄
A. If δ ≥ δ̄,

‖TRAS,δ‖ω ≤ ‖TRAS,δ̄‖ω. (4.1)

Moreover, if the Perron vector ωδ̄ of TRAS,δ̄ satisfies ωδ̄ > 0 and Aωδ̄ > 0, then we also have

ρ(TRAS,δ) ≤ ρ(TRAS,δ̄). (4.2)

Proof. Since Vi,δ̄ ⊆ Vi,δ, i = 1, 2, · · · ,m, we have A ≤ Mi,δ ≤ Mi,δ̄ ≤ diag(A). Noting that

A is an M−matrix, this yields

M−1
i,δ ≥ M−1

i,δ̄
for i = 1, 2, · · · ,m.

For all ω > 0 such that v = Aω > 0, we have

0 ≤ TRAS,δω =

(

I −

m
∑

i=1

(Ei,0Ei,δMi,δ)
−1A

)

ω = ω −

m
∑

i=1

(Ei,0Ei,δMi,δ)
−1v

≤ ω −

m
∑

i=1

Ei,0(Ei,δ̄Mi,δ̄)
−1v = TRAS,δ̄ω.
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Hence we get (4.1) by Lemma 4.1. If the Perron vector ωδ̄ of TRAS,δ̄ can be chosen as ω, we have

‖TRAS,δ̄‖ωδ̄
= ρ(TRAS,δ̄). So (4.1) yields ‖TRAS,δ‖ωδ̄

≤ ρ(TRAS,δ̄). Since the spectral radius is

never larger than any operator norm, thus we have (4.2). �

5. Numerical Result

In this section, we give some numerical experiments to investigate the behavior of the RAS

method presented in this paper. The program is coded in Matlab and run on a personal

computer. We test three problems as follows. Except comparing with the PSOR and classic

additive Schwarz method as in [18], we will discuss the effect of overlap and different number

of subdomains on the Algorithm 2.1.

Problem 1. We consider the following problem which similar to the problem presented

in [18]. Let Ω = (0, 1)× (0, 1) and consider the following test problem:

u ≥ 0, −△u+ f(u, x, y) ≥ 0, u(−△u+ f(u, x, y)) = 0,

where f(u, x, y) = u/(1 + u) + xy − 2. We discretize the problem by using five-point difference

scheme with a constant mesh step size: h = 1/(m+ 1), where m denotes the number of mesh

nodes in x− or y−direction (n = m2 is the total number of unknowns). Then Problem 1 can

be transformed to problem (1.1).

Problem 2 ([14]). Let Ω = (0, 1) and consider the following test problem:

u ≥ 0, −△u+ f(u, x) ≥ 0, u(−△u+ f(u, x)) = 0,

where f(u, x) = u2 − [sin(x − 0.1) − x(sin(0.1) + sin(0.9)) + sin(0.1)]2 − sin(x − 0.1). We

discretize the problem by the Lagrange linear finite-element scheme with a constant mesh step

h = 1/(n+ 1). Then Problem 2 can be transformed to problem (1.1).

Problem 3 ([19]). We consider the following nonlinear complementarity problem

u ≥ 0, F (u) ≥ 0, uTF (u) = 0.

Here F (u) = Au+D(u) + f , where,

A =
1

h2













H −I

−I H
. . .

. . .
. . . −I

−I H













, H =













4 −1

−1 4
. . .

. . .
. . . −1

−1 4













,

h = 1√
n+1

, D(u) = (Di) : Rn → Rn being a given diagonal mapping with Di : R → R,

for i = 1, 2, · · · , n, that is, component Di of D is a function of the ith variable ui only. Set

Di(ui) = λeui and obtain a diagonal mapping D(u) = (Di(ui)). In our test, we fix λ = 0.8, and

let fi = max{0, vi−0.5}×10wi−0.5, where wi and vi are random numbers in [0, 1], i = 1, 2, · · · , n.

We compare different algorithms from the point of view of iteration numbers and CPU

times. Here, we consider three algorithms: projected SOR method (denoted by PSOR), addi-

tive Schwarz algorithm (denoted by AS, see for example [17]) and restricted additive Schwarz

algorithm (Algorithm 2.1, denoted by RAS). In AS and RAS algorithms, the corresponding
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Table 5.1: The methods with different dimension for Problem 1.

PSOR AS RAS

N iter cpu iter cpu iter cpu

100 210 0.48 26 1.66 6 0.45

225 290 2.59 26 6.81 5 1.64

400 398 9.16 25 16.64 5 4.69

625 482 26.55 25 39.77 4 11.33

900 565 64.66 25 87.75 4 28.73

1225 655 132.36 26 158.02 4 48.91

Table 5.2: The methods with different dimension for Problem 2.

PSOR AS RAS

N iter cpu iter cpu iter cpu

100 46 0.28 32 0.64 14 0.38

225 123 3.75 28 3.91 12 1.81

400 243 30.91 26 29.52 10 11.84

625 420 168.75 25 130.78 10 51.53

900 606 649.55 25 445.22 10 175.67

1225 902 2025.94 25 1162.2 10 534.59

subproblems are solved by PSOR method and the relaxation parameter ω = 1.6. The tolerance

in the subproblems of the algorithms is chosen to be equal to 10−4 in ‖ · ‖2- norm, while in the

outer iterative processes is chosen to be equal to 10−6 in ‖ · ‖2- norm.

First, we choose initial value u0 = 1 for Problem 1, and u0 = 0 for Problems 2 and 3. We

change the dimension from n = 100 to n = 1225. In AS and RAS algorithms, we decompose S

into two equal parts with the overlapping size 20%, The results are presented in Tables 1-3. We

can see from the tables, RAS needs less time and fewer iteration numbers to converge than those

of AS and PSOR for most cases. What’s more, with the same initial value, we may conclude

that RAS has the good property just as AS that the convergence rate will not be deteriorated

with the refinement of the mesh.

Next, for Problem 1, we fix the dimension n = 100 and choose different initial values to test

whether the algorithms converge. The results are presented in Table 4. We can see from the

table, all algorithms globally converge to the solution and the behavior of RAS is better than

AS and PSOR.

Then, for Problem 1, we discuss the effect of overlap on Algorithm 2.1. We change the

overlap from 5% to 30%, and fix the dimension n = 400, the initial value u0 = 1. The result

Table 5.3: The methods with different dimension for Problem 3.

PSOR AS RAS

N iter cpu iter cpu iter cpu

100 17 0.02 12 0.11 2 0.08

225 16 0.06 10 0.22 2 0.06

400 16 0.2 10 1.08 2 0.19

625 16 0.45 10 2.86 2 0.44

900 17 0.84 9 5.38 3 0.89

1225 17 1.77 9 10.14 2 1.66
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Table 5.4: The methods with different initial value for Problem 1.

PSOR AS RAS

u0 iter cpu iter cpu iter cpu

-10 93 2.11 28 15.77 2 1.42

-5 93 2.16 27 14.98 2 1.11

-1 93 2.02 24 12.61 2 1

0 135 3.08 21 11.17 3 1.48

1 398 8.7 25 17.14 5 4.48

5 734 16.78 31 30.25 7 9.91

10 904 19.94 34 36.84 9 13.59

20 1081 25.03 37 44.39 10 17.69

Table 5.5: RAS with different overlapping for Problem 1.

ovp iter cpu ovp iter cpu

5 9 7.92 10 7 5.81

15 5 5.53 20 5 4.92

25 4 4.58 30 4 6.09

are listed in Table 5, where ovp denotes the overlap, iter denotes the iterative number and cpu

denotes the CPU times. From the table, we can see the more overlap there is, the faster the

convergence of Algorithm 2.1.

In the last experiment, we discuss the effect of numbers of the subdomains for Problem

1. In this experiment, we fix the dimension n = 400, the initial value u0 = 1, and fix the

overlap between adjacent subdomains to be 10%. The result is listed in Table 6. As we can see,

the iteration number of AS and RAS increase when the numbers of the subdomains increases.

However, the cpu time only increase slightly, since the dimension of the subproblems decreases

when the number of the subdomains increases.

Table 5.6: AS and RAS with different number of subdomains for Problem 1.

RAS AS

num iter cpu iter cpu

2 7 6.47 27 19.11

3 8 5.22 48 24.2

4 9 4.28 71 25.86

5 11 4.63 97 31.63

6 13 5.78 126 45.77

7 16 7.78 154 56.95

6. Conclusion

In this paper, we proposed a restricted additive Schwarz method for nonlinear complemen-

tarity problem. The algorithm belongs to domain decomposition methods and can be considered

as an extension of restricted additive Schwarz method for system of linear equations. We ana-

lyzed its convergence by using weighted max norm and compared the algorithm with classical

additive Schwarz method and PSOR method. As we can see from the preliminary numerical

results, the restricted additive Schwarz method spends less CPU time and needs fewer iteration
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numbers. Moreover, we tested the effect of overlapping size on the restricted additive Schwarz

method. From the numerical results, we may obtain an interesting conclusion: the convergence

rate of RAS is mesh-independent.

There are still some future works interested needed to be done. For example, it is interesting

for us to extend restricted additive Schwarz method to solve other variational inequality and

mathematical programming problem. As we can see from Algorithm 2.1, the restricted additive

Schwarz algorithm is nonsymmetric. It is also interesting for us to modify restricted additive

Schwarz algorithm to be symmetric. Furthermore, we can study the independent of mesh for

convergence rate of RAS.
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