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Abstract

In this paper, we investigate the adjoint equation in photoacoustic tomography with

variable sound speed, and propose three variational iterative algorithms. The basic idea of

these algorithms is to compute the original equation and the adjoint equation iteratively.

We present numerical examples and show the well performance of these variational iterative

algorithms.
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1. Introduction

Photoacoustic Tomography or Thermoacoustic Tomography is a developing medical imaging

method in recent decades [24]. They are hybrid medical imaging methods characterized by high

resolution and contrast. The physical principle can be described as follows. Light or a short

electromagnetic energy irradiates the biological tissue and the energy is absorbed by the tissue.

The tissue heats up and results in the phenomenon of the thermal expansion. This expansion

leads to weak acoustic waves and these waves are measured by ultrasound transducers located

on an observation surface. The measured information is used to recover the initial acoustic

pressure, which is roughly proportional to the rate of absorption [24]. Then the initial acoustic

pressure is used to produce an image.

We describe the widely accepted mathematical model here [12, 17]. Let Ω ⊂ Rn be an

open set with a smooth boundary, in applications, n = 2, 3. Assume that the sound speed

c(x) ∈ C∞(Rn) is smooth, strictly positive and c(x) = 1 outside Ω. Suppose u(x, t) is the

solution of the wave equation

utt − c2∆u = 0, t ≥ 0, x ∈ Rn, (1.1a)

u|t=0 = f, (1.1b)

ut|t=0 = 0, (1.1c)

in which the function f is supported in Ω and the value of u could be collected at transducer’s

location x ∈ S before a fixed measuring time T , where S ⊂ ∂Ω is the closed observation surface.

The measured value could be modeled by an operator as follows

Kf := u|S×[0,T ]. (1.2)
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The image reconstruction problem in photoacoustic tomography is to recover the initial value

f(x) by using the measured value Kf .

Obviously, this is an inverse problem. A lot of work have been done when the sound speed

c(x) is constant, and there are various types of reconstruction methods to solve this problem

(e.g filtered backprojection formulas, eigenfunction expansions and time reversal). Actually,

when n = 3 and the observation surface is spherical surface, the first inversion formula has

been found in [6]. Then in [23], a universal inversion formula has been proposed in the case

of the observation surface being spherical, planar and cylinadrical surface. The eigenfunction

expansion methods can work for any closed observation surface with constant sound speed and

the algorithm reconstructs the image faster than filtered backprojection formulas. However, all

of them would not be efficient for variable sound speed [2, 13, 14]. There are many cases that

the sound speed is variable [25]. If we apply the reconstruction methods for constant speed

on the variable sound speed condition, where we use the average sound speed as the constant

sound speed, it may cause large image errors [9]. Therefore, designing an effecient algorithm

for photoacoustic tomography with variable sound speed is an important work.

Several image reconstruction methods have been proposed to compensate for weak sound

speed variations. These methods assume that the photoacoustic wavefields propagate along

well-defined geometrical acoustic rays [16, 25]. However, these models possess limitations. The

ray-based propagation models will be effective only on length scales that are large compared to

the effective acoustic wavelength. These assumptions can be voilated in preclinical and clinical

applications [10].

For strong sound speed variations, the time reversal method has been proposed and it works

well in numerical experiments when the measuring time T is large, though it gives the exact

reconstruction result only when the sound speed is constant and the dimension is odd [4,8,9,26].

If these conditions are not simultaneously satisfied, it gives the approximate results [8, 9] and

the errors will increase when T becomes small [8, 17]. The Neumann series method is derived

in [20, 21], in which it is proved to be an exact reconstruction method under the variable

sound speed circumstance when T is not large. This method has been validated effective in

numerical experiments [17]. In [3], the authors study the adjoint operator of the appoximate

photoacoustic tomography model with constant sound speed and propose a conjugate gradient

method. They use this method with variable sound speed in numerical experiments. When

T is fixed, the conjugate gradient method performs better than time reversal, but worse than

Neumann series [3].

In this paper, we investigate the adjoint operator of the exact photoacoustic tomography

model with variable sound speed, and propose three variational iterative algorithms. We present

numerical examples and show that the proposed algorithms performs better than time reversal

and Neumann series, especially with noisy data.

This paper is organized as follows. In Section 2, we introduce some basic theories of the

hyperbolic equation. The adjoint of the imaging operator and the adjoint equation are studied

in Section 3. In Section 4, three variational iterative algorithms based on the adjoint operator

are proposed. Finally, numerical results are presented in Section 5, showing that our proposed

approaches reconstruct better results than those obtained by the existing methods.
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2. Preliminaries

Assume f ∈ C∞
0 (Ω) and u is the smooth solution of Eq. (1.1), then according to the finite

propagation speed theorem [5], there exists a ball U = B(0, R),Ω ⊂ U that u is supported in

U when t ≤ T . Therefore, we can study the following initial/boundary-value problem instead

of Eq. (1.1)

utt − c2∆u = 0, (x, t) ∈ U × (0, T ), (2.1a)

u|t=0 = f, x ∈ U (2.1b)

ut|t=0 = 0, x ∈ U (2.1c)

u = 0, (x, t) ∈ ∂U × (0, T ). (2.1d)

It is clear that if u is the smooth solution of Eq. (1.1), it must be the solution of Eq. (2.1).

Let us study a general initial/boundary-value problem

utt − c2∆u = h(x, t), (x, t) ∈ U × (0, T ), (2.2a)

u|t=0 = f(x), x ∈ U (2.2b)

ut|t=0 = g(x), x ∈ U (2.2c)

u = 0, (x, t) ∈ ∂U × (0, T ). (2.2d)

Definition 2.1. We say a function u ∈ L2(0, T ;H1
0(U)), with ut ∈ L2(0, T ;L2(U)), utt ∈

L2(0, T ;H−1(U)) a weak solution of Eq. (2.2) provided

∫

U

uttvdx+

∫

U

(

c2▽u · ▽v +

n
∑

i=1

2ccxi
uxi

v

)

dx =

∫

U

hvdx,

∀v ∈ H1
0 (U) and a.e. 0 ≤ t ≤ T, (2.3a)

u(x, 0) = f, ut(x, 0) = g. (2.3b)

Theorem 2.1. ( [5]) Assume f ∈ H1
0 (U), g ∈ L2(U) and h ∈ L2(0, T ;L2(U)). Then there

exists a unique weak solution of Eq. (2.2) satisfying

u ∈ L∞(0, T ;H1
0 (U)), ut ∈ L∞(0, T ;L2(U)).

We also have the estimate

esssup
0≤t≤T

(

||u(t)||H1
0
(U) + ||ut(t)||L2(U)

)

≤ C

(

||f ||H1
0
(U) + ||g||L2(U) + ||h||L2(0,T ;L2(U))

)

.

Theorem 2.2. ([5]) Set UT = U × (0, T ], assume f, g ∈ C∞(Ū), h ∈ C∞(ŪT ), and the mth-

order compatibility conditions hold for m = 0, 1, · · · :

f0 := f ∈ H1
0 (U), g1 := g ∈ H1

0 (U), (2.4a)

f2l :=
d2l−2h

dt2l−2
(·, 0)− c2∆f2l−2 ∈ H1

0 (U), (if m = 2l), (2.4b)
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g2l+1 :=
d2l−1h

dt2l−1
(·, 0)− c2∆g2l−1 ∈ H1

0 (U), (if m = 2l+ 1). (2.4c)

Then Eq. (2.2) has a unique solution u ∈ C∞(ŪT ).

If f ∈ C∞
0 (Ω), then f ∈ C∞

0 (U). According to Theorem 2.2, Eq. (2.1) has a unique smooth

solution ū. Assume u is the smooth solution of Eq. (1.1), thus

u = ū, (x, t) ∈ Ū × [0, T ].

3. Variational Approach

Define an operator W

W : H1
0 (Ω) −→ L2(0, T ;H1

0 (U))

f 7−→ u,

where u is the weak solution of Eq. (2.1). Next, we define a projection operator P

P : L2(0, T ;H1
0 (U)) −→ L2(0, T ;L2(S))

u 7−→ u|S×[0,T ].

Then the forward operator K can be expressed K := PW

K : H1
0 (Ω)) −→ L2(0, T ;L2(S))

f 7−→ u|S×[0,T ].

We first prove that the operator K is a linear bounded operator from space H1
0 (Ω) to space

L2(0, T ;L2(S)). It is clear that this operator is a linear operator. Therefore, we only need to

prove the boundedness. According to the Trace Theorem and the inequality in Theorem 2.1

||Kf ||L2(0,T ;L2(S)) ≤ ||u||L2(0,T ;L2(∂Ω)) ≤ C1||u||L2(0,T ;H1(Ω))

≤ C1||u||L2(0,T ;H1
0
(U)) ≤ C2||f ||H1

0
(U) = C2||f ||H1

0
(Ω).

If we have the value p(x, t) on S × [0, T ], then we can solve the inverse problem

f = arg min
f∈H1

0
(Ω)

||Kf − p||2L2(0,T ;L2(S)). (3.1)

Therefore, we need to look for the adjoint operator K∗ to solve this inverse problem. Here, we

introduce a special equation, which we call the adjoint equation of Eq. (2.1)

u∗tt − c2∆u∗ = p(x, t)δS(x), (x, t) ∈ S × (0, T ), (3.2a)

u∗|t=T = 0, (3.2b)

u∗t |t=T = 0, (3.2c)

u∗ = 0, (x, t) ∈ ∂U × (0, T ), (3.2d)
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where S ∈ ∂Ω,Ω ⊂ U and p(x, t) ∈ L2(0, T ;L2(S)). δS(x) is defined as follows

∫

U

φδS(x)dx =

∫

S

φds(x), ∀φ ∈ H1
0 (U).

Before defining the weak solution of the adjoint equation, we define some test function sets

Notation 3.1. Define

D :=
{

v
∣

∣ v is a weak solution of the equation (2);

h ∈ L2(0, T ;L2(U)), f ∈ H1
0 (U), g ∈ L2(U)

}

as the test function set of the adjoint Eq. (3.2), and also define

D1 :=
{

v|h ∈ L2(0, T ;L2(U)), f = 0, g = 0
}

,

D2 :=
{

v|h = 0, f ∈ H1
0 (U), g = 0

}

,

D3 :=
{

v|h = 0, f = 0, g ∈ L2(U)
}

.

It is obvious that C2([0, T ];C2
0(U)) ⊂ D. Since C2([0, T ];C2

0 (U)) is dense in L2(0, T ;H1
0 (U)),

D is dense in L2(0, T ;H1
0(U)). Besides, it is easy to show that D1 ⊂ D, D2 ⊂ D and D3 ⊂ D.

Definition 3.1. We say a function u∗ ∈ L2(0, T ;L2(U)), with u∗(x, 0) ∈ L2(U), u∗t (x, 0) ∈

H−1(U) a weak solution of Eq. (3.2) provided that

∫ T

0

∫

U

c−2u∗hdxdt−

∫

U

c−2u∗t (x, 0)fdx+

∫

U

c−2u∗(x, 0)gdx

=

∫ T

0

∫

S

c−2pvds(x)dt, ∀v ∈ D. (3.3)

Theorem 3.1. Assume p(x, t) ∈ L2(0, T ;L2(S)). Then there exists a unique weak solution

u∗ ∈ L2(0, T ;L2(U)) with u∗(x, 0) ∈ L2(U), u∗t (x, 0) ∈ H−1(U) of Eq. (3.2), and we have the

estimate

||u∗||L2(0,T ;L2(U)) + ||u∗(x, 0)||L2(U) + ||u∗t (x, 0)||H−1(U)

≤ C||p(x, t)||L2(0,T ;L2(S)).

Proof. First, we prove that there exist a unique solution u∗(x, t) ∈ L2(0, T ;L2(U)) when the

test function v ∈ D1. For a given function h ∈ L2(0, T ;L2(U)), there exists v1 ∈ D1 that

∫ T

0

∫

U

c−2u∗hdxdt =

∫ T

0

∫

S

c−2pv1ds(x)dt. (3.4)

According to the Trace Theorem and Theorem 2.1

∫ T

0

∫

S

c−2pv1ds(x)dt ≤ ||p||L2(0,T ;L2(S))||v1||L2(0,T ;L2(S))

≤ ||p||L2(0,T ;L2(S))||v1||L2(0,T ;L2(∂Ω)) ≤ C1||p||L2(0,T ;L2(S))||v1||L2(0,T ;H1(Ω))

≤ C1||p||L2(0,T ;L2(S))||v1||L2(0,T ;H1
0
(U)) ≤ C2||p||L2(0,T ;L2(S))||h||L2(0,T ;L2(U)).
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Then the right side of Eq. (3.4) is a linear functional on L2(0, T ;L2(U)). According to the

Riesz Theorem, there exist a unique u∗ ∈ L2(0, T ;L2(U)). If we set h = c2u∗ in Eq. (3.4),

then we have

||u∗||2L2(0,T ;L2(U)) ≤ C2||p||L2(0,T ;L2(S))||c
2u∗||L2(0,T ;L2(U))

≤ C3||p||L2(0,T ;L2(S))||u
∗||L2(0,T ;L2(U)).

Thus

||u∗||L2(0,T ;L2(U)) ≤ C3||p||L2(0,T ;L2(S)). (3.5)

Using the same proof process, we can get a unique function u∗t (x, 0) ∈ H−1(U), u∗(x, 0) ∈

L2(U), where we use the test function sets D2, D3. We can also get similar estimates

||u∗t (x, 0)||H−1(U) ≤ C4||p||L2(0,T ;L2(S)) (3.6a)

||u∗(x, 0)||L2(U) ≤ C5||p||L2(0,T ;L2(S)) (3.6b)

Next we prove that ∀v ∈ D, we have Eq. (3.3). We first prove that for a given v0 ∈ D, there

exists v1 ∈ D1, v2 ∈ D2, v3 ∈ D3 that

v0 = v1 + v2 + v3

Since v0 ∈ D, there exists h0 ∈ L2(0, T ;L2(U)), f0 ∈ H1
0 (U), g0 ∈ L2(U) that v0 is the weak

solution of the equation

vtt − c2∆v = h0, (x, t) ∈ U × (0, T ), (3.7a)

v|t=0 = f0, (3.7b)

vt|t=0 = g0, (3.7c)

v = 0, (x, t) ∈ ∂U × (0, T ). (3.7d)

Assume v1 is the weak solution of the equation

vtt − c2∆v = h0, (x, t) ∈ U × (0, T ), (3.8a)

v|t=0 = 0, (3.8b)

vt|t=0 = 0, (3.8c)

v = 0, (x, t) ∈ ∂U × (0, T ). (3.8d)

According to Theorem 2.1, there exists v1 ∈ D1. Using similar methods, we can find v2 ∈ D2

and v3 ∈ D3 if we set v|t=0 = f0 and vt|t=0 = g0. Write v̄ = v1 + v2 + v3, then v̄ is the weak

solution of Eq. (3.7), thus

v0 = v̄ = v1 + v2 + v3.

Then we have

∫ T

0

∫

U

c−2u∗hdxdt−

∫

U

c−2u∗t (x, 0)fdx+

∫

U

c−2u∗(x, 0)gdx

=

∫ T

0

∫

S

c−2pv0ds(x)dt, ∀v0 ∈ D.
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For a given f ∈ H1
0 (Ω), assume v is the weak solution of Eq. (2.1), we have

∫

U

−c−2u∗t (x, 0)fdx =

∫ T

0

∫

S

c−2pvds(x)dt

=

∫ T

0

∫

S

pvds(x)dt, ∀f ∈ H1
0 (Ω).

Define

K∗p = −c−2u∗t (x, 0), x ∈ Ω.

Thus

< K∗p, f >= (p,Kf).

4. Iterative Algorithms

We find the adjoint Eq. (3.2) and the adjoint operator K∗, then we can use some iterative

algorithms for photoacoustic tomography. Next, we will introduce three iterative algorithms.

4.1. Landweber iteration

The Landweber iteration has been proposed in [7, 15], the authors suggest rewriting the

equation Kf = g in the form f = (I − τK∗K)f + τK∗g for some τ > 0 and iterating this

equation

f0 := initial guess,

fn = (I− τK∗K)fn−1 + τK∗g, n = 1, 2, · · · .

This iteration scheme can be interperted as the steeptest descent algorithm applied to the

quadratic functional [11]

J(f) = ||Kf − g||2. (4.1)

4.2. Conjugate gradient method

A fast iterative algorithm for solving least squares problems is the conjugate gradient method

as described in [11]

n := 0;

f0 := 0;

p0 := −K∗g

begin conjugate gradient method

tn = (Kfn−g,Kpn)
‖Kpn‖ ;

fn+1 = fn − tnpn;

αn = ‖K∗(Kfn+1−g)‖2

‖K∗(Kfn−g)‖2 ;

pn+1 = K∗(Kfn+1 − g) + αnpn;

n = n+ 1;

end conjugate gradient method
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4.3. Total variation regularization

If the original image f is nearly piecewise constant with jump discontinuities, we can mini-

mize the Tikhonov-TV functional [1, 22]

Tα(f) =
1

2
||Kf − g||2 + αTV (f), (4.2)

where

TV (f) := sup
−→v ∈V

∫

Ω

fdiv−→v dx,

and the space of the functions

V =
{

−→v ∈ C1
0 (Ω)| |

−→v (x)| ≤ 1 for all x ∈ Ω
}

.

The algorithm based on the steepest descent method for solving Eq. (4.2) is given as follows

[19, 22]

n := 0;

f0 := initial guess;

begin steepest descent iterations

hn = K∗(Kfn − g) + αL(fn)fn;

fn+1 = fn − τhn;

n = n+ 1;

end steepest descent iterations.

In the above algorithm, α > 0, τ > 0, and

L(f)f = −▽ · (ψ′(|▽f |2)▽f),

with ψ(t) = 2
√

t+ β2, where β is a small positive parameter. In our experiments, we choose

β = 10−7.

5. Numerical Experiments

In this section, we use the abbreviation OI for the original image, TR for time reversal, NS

for Neumann series, LI for Landweber iteration, CG for conjugate gradient method and TV for

total variation regularization, and will only show the two dimensional numerical examples for

reducing the cost of the computation. Set Ω = [−1.28, 1.28]2 and assume that the observation

surface S is ∂Ω. We work with three sound speeds, including constant sound speed c1, non-

trapping sound speed c2 and trapping sound speed c3.

c1(x) = 1.0,

c2(x) =

{

1.0 + 0.2 sin(2πx) + 0.1 cos(2πy), x ∈ Ω̄,

1.0, x ∈ Rn\Ω̄

c3(x) =







0.5, |x| ≤ 0.5,

|x|, 0.5 < |x| ≤ 1,

1.0, |x| > 1.

To avoid committing an ‘inverse crime’, a 512× 512 grid with ∆xd = ∆yd = 0.005, ∆td =
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Fig. 5.1. Original Images.

0.5∆xd/max{c(x)} is employed to generate the measurement data. Then we use mesh sizes

∆x = ∆y = 0.01, ∆t = 2∆td for reconstructions. The iterative parameter τ is set 1 for LI and

TV. The regularization parameter α is set 5× 10−5 for noiseless data, 3 × 10−4 for 10% noise

and 5× 10−4 for 20% noise. All the initial values in LI, CG and TV in the iterations are set 0.

The difficulty of computing the adjoint Eq. (3.2) is to compute the function g(x, t)δS(x).

Since the observation surface S is ∂Ω and ∆x = ∆y

∫

Rn

g(x, t)δS(x)dx ≈
∑

xi,j

gi,jδS(x)i,j∆x∆x,

∫

S

g(x, t)ds(x) ≈
∑

xi,j∈S

gi,j∆x.

Then δS(x) can be approximately computed

δS(x) ≈

{

0, xi,j /∈ S,

1
∆x
, xi,j ∈ S.

Therefore, the adjoint Eq. (3.2) can be computed

(∂tt − c2∆)u∗i,j(t) =
gi,j(t)

∆x
, xi,j ∈ S

(∂tt − c2∆)u∗i,j(t) = 0, xi,j /∈ S,

u∗i,j(T ) = 0, ∂tu
∗
i,j(T ) = 0.

To improve the computation accuracy, we compute u∗t (·, 0) as follows

u∗t (·, 0) =
u∗(·,∆t)− u∗(·,−∆t)

2∆t
.

It has been suggested in [3,18] that we can use an arificial numerical atteuation to offset spurious

high-frequency effects and noise. Then the wave equation can be computed as follows

un+1 − 2un + un−1

∆t2
− c2∆un = (∆x)γ∆(

un − un−1

∆t
).

In our experiments, we set γ = 1.8.
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−1 0 1

0

0.5

1
(g) OI

−1 0 1

0

0.5

1
(h) TR

−1 0 1

0

0.5

1
(i) NS

−1 0 1

0

0.5

1
(j) LI

−1 0 1

0
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1
(k) CG

−1 0 1

0

0.5

1
(l) TV

Fig. 5.2. Reconstructions of Phantom 1 in sound speed c1 with noiseless data. (a-f)The original image
and the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

Finally, we give the computation of the function L(fn)fn in TV [19]

(L(fn)fn)ij = −
1

δx

[

∆x
−

(

∆x
+f

n
ij

√

(∆x
+f

n
ij)

2 + (m(∆y
+f

n
ij ,∆

y
−f

n
ij))

2 + β2

)

+∆y
−

(

∆y
+f

n
ij

√

(∆y
+f

n
ij)

2 + (m(∆x
+f

n
ij ,∆

x
−f

n
ij))

2 + β2

)

]

,
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where m(a, b) = minmod(a, b) and

∆x
−fij = fij − fi−1,j , ∆x

+fij = fi+1,j − fij ,

and similarly for ∆y
−fij , ∆

y
+fij .

In this section, three phantoms are selected to test these algorithms, see Fig. 5.1. In our

experiments, we show the numerical results both with noiseless and noisy data, where 10% and

20% additive white Gaussian noise respect to the maximum value of noiseless data are added

to the simulated data. In order to compare the performances of these different algorithms, the

best reconstructions are adopted by selecting the term numbers in NS, iterative steps in LI,

CG and TV in different situations, for the computation errors will increase if we take too many

terms or iterative steps.

5.1. Sound speed c1

We start with the constant sound speed and reconstruct Phantom 1 and Phantom 3. We

set T = 2 and use U = [−3.5, 3.5]2 as the computation domain.

The reconstructions and Y-slice diagrams of Phantom 1 with noiseless data are presented

in Fig. 5.2, where we take 6 terms in NS, 13 iterative steps in LI, 5 iterative steps in CG and

15 iterative steps in TV. Fig. 5.3 shows the reconstructions and Y-slice diagrams of Phantom

1 with 20% noise, where we take 2 terms in NS, 5 iterative steps in LI, 2 iterative steps in CG

and 8 iterative steps in TV.

The reconstructions and Y-slice diagrams of Phantom 3 with noiseless data are presented

in Fig. 5.4, where we take 4 terms in NS, 8 iterative steps in LI, 3 iterative steps in CG and

8 iterative steps in TV. Fig. 5.5 shows the reconstructions and Y-slice diagrams of Phantom 3

with 20% noise, where we take 2 terms in NS, 6 iterative steps in LI, 2 iterative steps in CG

and 7 iterative steps in TV.

Table 5.1: L2 error in sound speed c1.

Phantom Noise TR NS LI CG TV

Phantom 1
noiseless data 29.1% 3.7% 3.6% 3.5% 3.3%
10% noise 29.4% 13.8% 11.9% 11.5% 7.4%
20% noise 30.2% 21.7% 20.2% 20.0% 13.2%

Phantom 3
noiseless data 43.9% 26.0% 23.4% 23.4% 23.3%
10% noise 44.1% 28.6% 25.8% 25.8% 23.8%
20% noise 43.9% 31.9% 31.2% 30.6% 27.5%

The L2 errors of these methods in sound speed c1 are presented at Table 5.1. We can see

that the reconstructions of Phantom 1 are much better than those of Phantom 3, especially in

the noisy case. The reason is that Phantom 1 has smooth boundaries between objects while

Phantom 3 has discontinuous boundaries, and computing the hyperbolic equation with the

discontinuous initial value can cause large computing errors.

5.2. Sound speed c2

We still reconstruct Phantom 1 and Phantom 3 in sound speed c2. Set T = 2 and use

U = [−3.5, 3.5]2 as the computation domain.
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Fig. 5.3. Reconstructions of Phantom 1 in sound speed c1 with 20% noise. (a-f)The original image and
the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

The reconstructions and Y-slice diagrams with noiseless data are presented in Fig. 5.6,

where we take 6 terms in NS, 13 iterative steps in LI, 6 iterative steps in CG and 14 iterative

steps in TV. Fig. 5.7 shows the reconstructions and Y-slice diagrams with 20% noise, where we
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Fig. 5.4. Reconstruction of Phantom 3 in sound speed c1 with noiseless data. (a-f)The original image
and the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

take 3 terms in NS, 6 iterative steps in LI, 3 iterative steps in CG and 8 iterative steps in TV.

The reconstructions and Y-slice diagrams of Phantom 3 with noiseless data are presented

in Fig. 5.8, where we take 4 terms in NS, 8 iterative steps in LI, 3 iterative steps in CG and
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Fig. 5.5. Reconstruction of Phantom 3 in sound speed c1 with 20% noise. (a-f)The original image and
the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

8 iterative steps in TV. Fig. 5.9 shows the reconstructions and Y-slice diagrams of Phantom 3

with 20% noise, where we take 2 terms in NS, 4 iterative steps in LI, 2 iterative steps in CG

and 5 iterative steps in TV.

The L2 errors of these methods in sound speed c2 are presented at Table 5.2.
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Fig. 5.6. Reconstructions of Phantom 1 in sound speed c2 with noiseless data. (a-f)The original image
and the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

5.3. Sound speed c3

In sound speed c3, we reconstruct Phantom 2. In this sound speed, we can not stably

reconstruct the initial value before any bounded time T . However there is a unique solution
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Fig. 5.7. Reconstructions of Phantom 1 in sound speed c2 with 20% noise. (a-f)The original image and
the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

when T > 4 [20]. Therefore, we set T = 4 and use U = [−5.5, 5.5]2 as the computation domain.

The reconstructions and Y-slice diagrams with noiseless data are presented in Fig. 5.10,

where we take 7 terms in NS, 11 iterative steps in LI, 4 iterative steps in CG and 12 iterative

steps in TV. Fig. 5.11 shows the reconstructions and Y-slice diagrams with 20% noise, where
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Fig. 5.8. Reconstruction of Phantom 3 in sound speed c2 with noiseless data. (a-f)The original image
and the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

we take 2 terms in NS, 4 iterative steps in LI, 2 iterative steps in CG and 8 iteratieve steps in

TV.

The L2 errors of these methods are presented at Table 5.3.
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Fig. 5.9. Reconstruction of Phantom 3 in sound speed c2 with 20% noise. (a-f)The original image and
the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

5.4. Remarks

We know that Landweber, CG and TV minimizations are extensively used in imaging and

inverse problems. But these methods have not been used in photoacoustic tomography with
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Fig. 5.10. Reconstructions of Phantom 2 in sound speed c3 with noiseless data. (a-f)The original image
and the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

variable sound speed before since we do not know the adjoint equation and the adjoint operator.

In this paper, we find the adjoint operator and propose three iterative methods for photoacoustic

tomography. In our experiments, we can see that the image quality of TV is better than other

methods’, especially with noisy data. We think the reason is that most regions of our phantoms
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Fig. 5.11. Reconstructions of Phantom 2 in sound speed c3 with 20% noise. (a-f)The original image
and the solutions of TR, NS, LI, CG and TV. (g-l)Y-slices of TR, NS, LI, CG, TV solutions (continuous
lines) and the exact solutions (dashed lines).

are piecewise constant and TV can well suppress the noise for these phantoms.

We test these different iterative algorithms when we find the adjoint equation and the adjoint

operator. Although TV is actually better than other methods, it needs more iterative steps to

get the best reconstructions than LI and CG, especially compared to CG. In all experiments,
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Table 5.2: L2 error in sound speed c2.

Phantom Noise TR NS LI CG TV

Phantom 1
noiseless data 32.7% 3.9% 4.1% 4.0% 3.8%
10% noise 33.0% 11.8% 11.6% 11.3% 7.4%
20% noise 33.7% 19.5% 19.6% 19.2% 12.8%

Phantom 3
noiseless data 42.9% 26.6% 25.1% 24.9% 25.0%
10% noise 43.4% 30.3% 29.2% 28.9% 27.4%
20% noise 42.9% 36.2% 36.9% 36.2% 33.5%

Table 5.3: L2 error in sound speed c3.

Phantom Noise TR NS LI CG TV

Phantom 2
noiseless data 42.6% 15.8% 14.9% 14.8% 14.5%
10% noise 42.9% 22.9% 20.2% 20.4% 16.3%
20% noise 42.6% 29.0% 28.1% 28.1% 22.0%

CG can get the best reconstructions in less than 5 iterative steps while TV needs more than

10 iterative steps. In our algorithms for photoacoustic tomography, one iterative step needs

computing the original equation and the adjoint equation at least once, which cost a lot of

time. Depending on the measuring time T and the computation domain U , it costs more than

1 minute and less than 10 minutes to compute the original equation and the adjoint equation

in one iterative step. Therefore, CG is much faster than TV.

6. Conclusions

By investigating the adjoint equation with variable sound speed, we propose three image

reconstruction algorithms for photoacoustic tomography. These algorithms are executed by

iteratively computing the original equation and the adjoint equation. We worked with two di-

mensional numerical examples and three different sound speeds, including constant sound speed,

non-trapping sound speed and trapping sound speed. All the numerical examples demonstrate

the well performance of the variational iterative algorithms. Especially, the reconstructions of

TV are significantly better than existing inversion methods in the case of the noisy situation.
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