arrow
Volume 1, Issue 6
On Integral Equation and Least Squares Methods for Scattering by Diffraction Gratings

T. Arens, S. N. Chandler-Wilde & J. A. DeSanto

Commun. Comput. Phys., 1 (2006), pp. 1010-1042.

Published online: 2006-01

Export citation
  • Abstract

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414, 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS method and illustrate the ill-conditioning that arises.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-1-1010, author = {}, title = {On Integral Equation and Least Squares Methods for Scattering by Diffraction Gratings}, journal = {Communications in Computational Physics}, year = {2006}, volume = {1}, number = {6}, pages = {1010--1042}, abstract = {

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414, 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS method and illustrate the ill-conditioning that arises.

}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7992.html} }
TY - JOUR T1 - On Integral Equation and Least Squares Methods for Scattering by Diffraction Gratings JO - Communications in Computational Physics VL - 6 SP - 1010 EP - 1042 PY - 2006 DA - 2006/01 SN - 1 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cicp/7992.html KW - Helmholtz equation KW - first kind integral equation KW - spectral method KW - condition number. AB -

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414, 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS method and illustrate the ill-conditioning that arises.

T. Arens, S. N. Chandler-Wilde & J. A. DeSanto. (2020). On Integral Equation and Least Squares Methods for Scattering by Diffraction Gratings. Communications in Computational Physics. 1 (6). 1010-1042. doi:
Copy to clipboard
The citation has been copied to your clipboard