- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Operator Splitting Schemes for the Non-Stationary Thermal Convection Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-29-474,
author = {},
title = {Operator Splitting Schemes for the Non-Stationary Thermal Convection Problems},
journal = {Journal of Computational Mathematics},
year = {2011},
volume = {29},
number = {4},
pages = {474--490},
abstract = {
In this work, a new numerical scheme is proposed for thermal/isothermal incompressible viscous flows based on operator splitting. Unique solvability and stability analysis are presented. Some numerical results are given, which show that the proposed scheme is highly efficient for the thermal/isothermal incompressible viscous flows.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1103-m3261}, url = {http://global-sci.org/intro/article_detail/jcm/8488.html} }
TY - JOUR
T1 - Operator Splitting Schemes for the Non-Stationary Thermal Convection Problems
JO - Journal of Computational Mathematics
VL - 4
SP - 474
EP - 490
PY - 2011
DA - 2011/08
SN - 29
DO - http://doi.org/10.4208/jcm.1103-m3261
UR - https://global-sci.org/intro/article_detail/jcm/8488.html
KW - $θ$ scheme, Stability, Isothermal incompressible viscous flows.
AB -
In this work, a new numerical scheme is proposed for thermal/isothermal incompressible viscous flows based on operator splitting. Unique solvability and stability analysis are presented. Some numerical results are given, which show that the proposed scheme is highly efficient for the thermal/isothermal incompressible viscous flows.
Hongen Jia, Kaitai Li, & Haiyan Sun. (1970). Operator Splitting Schemes for the Non-Stationary Thermal Convection Problems.
Journal of Computational Mathematics. 29 (4).
474-490.
doi:10.4208/jcm.1103-m3261
Copy to clipboard