- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
New Proof of Dimension Formula of Spline Spaces over T-Meshes via Smoothing Cofactors
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-24-501,
author = {},
title = {New Proof of Dimension Formula of Spline Spaces over T-Meshes via Smoothing Cofactors},
journal = {Journal of Computational Mathematics},
year = {2006},
volume = {24},
number = {4},
pages = {501--514},
abstract = {
A T-mesh is basically a rectangular grid that allows T-junctions. Recently, Deng $etal$ introduced splines over T-meshes, which are generalizations of T-splines invented by Sederberg $etal$, and proposed a dimension formula based on the B-net method. In this paper, we derive an equivalent dimension formula in a different form with the smoothing cofactor method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8770.html} }
TY - JOUR
T1 - New Proof of Dimension Formula of Spline Spaces over T-Meshes via Smoothing Cofactors
JO - Journal of Computational Mathematics
VL - 4
SP - 501
EP - 514
PY - 2006
DA - 2006/08
SN - 24
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8770.html
KW - Spline space, T-mesh, Smoothing cofactors.
AB -
A T-mesh is basically a rectangular grid that allows T-junctions. Recently, Deng $etal$ introduced splines over T-meshes, which are generalizations of T-splines invented by Sederberg $etal$, and proposed a dimension formula based on the B-net method. In this paper, we derive an equivalent dimension formula in a different form with the smoothing cofactor method.
Zhang-jin Huang, Jian-song Deng, Yu-yu Feng & Fa-lai Chen. (1970). New Proof of Dimension Formula of Spline Spaces over T-Meshes via Smoothing Cofactors.
Journal of Computational Mathematics. 24 (4).
501-514.
doi:
Copy to clipboard