- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Interpolation by Loop's Subdivision Functions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-23-247,
author = {},
title = {Interpolation by Loop's Subdivision Functions},
journal = {Journal of Computational Mathematics},
year = {2005},
volume = {23},
number = {3},
pages = {247--260},
abstract = {
For the problem of constructing smooth functions over arbitrary surfaces from discrete data, we propose to use Loop's subdivision functions as the interpolants. Results on the existence, uniqueness and error bound of the interpolants are established. An efficient progressive computation algorithm for the interpolants is also presented.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8813.html} }
TY - JOUR
T1 - Interpolation by Loop's Subdivision Functions
JO - Journal of Computational Mathematics
VL - 3
SP - 247
EP - 260
PY - 2005
DA - 2005/06
SN - 23
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8813.html
KW - Interpolation, Loop's subdivision function.
AB -
For the problem of constructing smooth functions over arbitrary surfaces from discrete data, we propose to use Loop's subdivision functions as the interpolants. Results on the existence, uniqueness and error bound of the interpolants are established. An efficient progressive computation algorithm for the interpolants is also presented.
Guo-Liang Xu. (1970). Interpolation by Loop's Subdivision Functions.
Journal of Computational Mathematics. 23 (3).
247-260.
doi:
Copy to clipboard