- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On the Error Estimates for the Rotational Pressure-Correction Projection Spectral Methods for the Unsteady Stokes Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-23-285,
author = {},
title = {On the Error Estimates for the Rotational Pressure-Correction Projection Spectral Methods for the Unsteady Stokes Equations},
journal = {Journal of Computational Mathematics},
year = {2005},
volume = {23},
number = {3},
pages = {285--304},
abstract = {
This paper provides an analysis of the rotational form of the pressure-correction methods by spectral approximations for the unsteady Stokes equations. Error estimates in finite time for the fully discrete case are given. Numerical experiences using both spectral and spectral element methods are carried out to confirm the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8816.html} }
TY - JOUR
T1 - On the Error Estimates for the Rotational Pressure-Correction Projection Spectral Methods for the Unsteady Stokes Equations
JO - Journal of Computational Mathematics
VL - 3
SP - 285
EP - 304
PY - 2005
DA - 2005/06
SN - 23
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8816.html
KW - Stokes equations, Projection methods, Spectral methods.
AB -
This paper provides an analysis of the rotational form of the pressure-correction methods by spectral approximations for the unsteady Stokes equations. Error estimates in finite time for the fully discrete case are given. Numerical experiences using both spectral and spectral element methods are carried out to confirm the theoretical results.
Feng-Hui Huang & Chuan-Ju Xu. (1970). On the Error Estimates for the Rotational Pressure-Correction Projection Spectral Methods for the Unsteady Stokes Equations.
Journal of Computational Mathematics. 23 (3).
285-304.
doi:
Copy to clipboard