- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H(1) + H(2) + H(3)
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-20-89,
author = {Tang , Yi-Fa},
title = {A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H(1) + H(2) + H(3)},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {1},
pages = {89--96},
abstract = {
In this note, we will give a proof for the uniqueness of 4th-order time-reversible symplectic difference schemes of 13th-fold compositions of phase flows $\phi ^t_{H(1)}, \phi ^t_{H(2)}, \phi ^t_{H(3)}$ with different temporal parameters for splitable hamiltonian $H=H^{(1)}+H^{(2)}+H^{(3)}$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8901.html} }
TY - JOUR
T1 - A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H(1) + H(2) + H(3)
AU - Tang , Yi-Fa
JO - Journal of Computational Mathematics
VL - 1
SP - 89
EP - 96
PY - 2002
DA - 2002/02
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8901.html
KW - Time-Reversible symplectic scheme, Splitable hamiltonian.
AB -
In this note, we will give a proof for the uniqueness of 4th-order time-reversible symplectic difference schemes of 13th-fold compositions of phase flows $\phi ^t_{H(1)}, \phi ^t_{H(2)}, \phi ^t_{H(3)}$ with different temporal parameters for splitable hamiltonian $H=H^{(1)}+H^{(2)}+H^{(3)}$.
Yi-Fa Tang. (1970). A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H(1) + H(2) + H(3).
Journal of Computational Mathematics. 20 (1).
89-96.
doi:
Copy to clipboard