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Abstract

We present a class of asymptotically optimal successive overrelaxation methods for
solving the large sparse system of linear equations. Numerical computations show that
these new methods are more efficient and robust than the classical successive overrelaxation
method.
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1. Introduction

Consider the solution of system of linear equations
Ar=b, A e R"" nonsingular, and z,b € R"”, (1)

where the coefficient matrix A € R"™*" is large sparse, and usually, has certain particular
structures and properties, b € R™ is a given right-hand-side vector, and x € R" is the unknown
vector.

The successive overrelaxation (SOR) method [9] provides one powerful tool for solving the
system of linear equations (1), in particular, when an optimal, or at least, a nearly optimal
relaxation factor is easily obtainable. However, except we have an analytic formula about the
optimal relaxation factor for the consistently ordered p-cyclic matrix [9, 6, 2], we know little
about its choice in actual computations for a general matrix. Even the analytic formula is
practically unapplicable, because it involves the spectral radius of the corresponding Jacobi
iteration matrix, whose computation is considerably costly and complicated. This heavily
restricts efficient applications of the SOR method to a wider range of real-world problems.

In this paper, by choosing the relaxation factor in a dynamic fashion according to known
information at the current iterate step, we propose a class of new SOR methods, called as
asymptotically optimal SOR methods (AOSOR methods), for solving the system of linear equa-
tions (1).

The AOSOR methods determine the relaxation factors iteratively through minimizing either
the A-norm of the error when the coefficient matrix A € R™*" is a symmetric positive definite
matrix, or the 2-norm of the residual when it is a general unsymmetric nonsingular matrix,
at each step of their iterates, with a reasonably extra cost. In actual computations, they
show better numerical behaviours than the SOR method for both symmetric positive definite
matrix and general unsymmetric nonsingular matrix. Numerical experiments show that the
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new AOSOR methods are feasible, efficient and robust for solving large sparse system of linear
equations (1).

2. The SOR Method and its Properties

Without loss of generality, we assume that the diagonal matrix of the matrix 4 € R™*" is
the identity I. Let —L and —U be strictly lower and strictly upper triangular matrices of the
matrix A € R"*", respectively. Then it holds that A = I — L —U. The SOR method for solving
the system of linear equations (1) can be expressed as

2 = L) + gw),

where
Lw)=(I-wLl) Y1 -wI+wl), gw)=wl-wL) b (2)
If we further introduce matrices
M(w) :%(z—wL), Nw) = %((1—w)]+wU), 3)

then it holds that
L) = M) N (@), g(w) = M),

If w = 1, the SOR method simplifies to the Gauss-Seidel method. And various generaliza-
tions of the SOR method can be found in [1, 3, 4, 7, §].

It is well-known that the SOR method converges to the unique solution x* of the system
of linear equations (1) when the coefficient matrix A € R™*" is an M-matrix, an H-matrix,
an irreducibly diagonally dominant matrix, and a symmetric positive definite matrix, respec-
tively, under certain restrictions on the relaxation factor. More precisely, we have the following
conclusions.

Theorem 2.1. Let A € R™*" be a nonsingular matriz, and its diagonal entries be all nonzero.
Denote D = diag(A), B=D — A, and J = D 'B. Then the SOR method is convergent to the
unique solution of the system of linear equations (1), if

(a) A€ R™" is an M-matriz, and 0 < w < #(J); [5]
(b) AeR™™™ is an H-matriz, and 0 < w < ﬁ(m); [5]

(c) AeR"™™ is an irreducibly diagonally dominant matriz, and 0 < w < #(\JD’. [5]

(d) A€ R™" is a symmetric positive definite matriz, and 0 < w < 2. [9]

Here, p(-) and |-| denote the spectral radius and the absolute value of the corresponding matriz,
respectively.

Moreover, for the consistently ordered p-cyclic matrix class, we have the following precise
description about the optimum relaxation factor of the SOR method.
Theorem 2.2°1. Let A € R™" be a nonsingular and consistently ordered p-cyclic matriz,
with nonzero diagonal entries. Denote D = diag(A), B=D — A, and J = D7'B. If w # 0,
and X\ is a nonzero eigenvalue of the matriz L(w) of (2) and if p satisfies

A +w—1)P = MNP lyPyP (4)

then p is an eigenvalue of the Jacobi iteration matriz J. Conversely, if u is an eigenvalue of J
and \ satisfies (4), then X is an eigenvalue of L(w).

Moreover, the optimum relazation factor wop: which minimizes the asymptotic convergence
rate of the SOR method is the unique positive real root (less than p/(p — 1)) of the equation

(P(Nwopt)? = (07 (p =)' 7P (wopt — 1), (5)



