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Abstract

We derived and analyzed a new numerical scheme for the Navier-Stokes equations by

using H(div) conforming finite elements. A great deal of effort was given to an establish-

ment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the

newly derived Sobolev inequalities were employed to provide a mathematical theory for

the H(div) finite element scheme. For example, it was proved that the new finite element

scheme has solutions which admit a certain boundedness in terms of the input data. A

solution uniqueness was also possible when the input data satisfies a certain smallness con-

dition. Optimal-order error estimates for the corresponding finite element solutions were

established in various Sobolev norms. The finite element solutions from the new scheme

feature a full satisfaction of the continuity equation which is highly demanded in scientific

computing.
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1. Introduction

We are concerned with numerical solutions of the Navier-Stokes equations: find a pair of

unknown functions (u; p) satisfying

−ν∆u + u · ∇u + ∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where ν denotes the fluid viscosity; ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence

operators, respectively; Ω ⊂ R
n is the region occupied by the fluid; f = f(x) ∈ [L2(Ω)]n is the

unit external volumetric force acting on the fluid at x ∈ Ω.

The commonly used finite element methods for the Navier-Stokes problem (1.1)-(1.3) are

based on a variational equation which is obtained by testing the momentum equation (1.1) by

functions in [H1
0 (Ω)]n and the continuity equation (1.2) by functions in L2(Ω) (see Section 2

for their definition). The corresponding finite element method requires a pair of finite element

spaces which are conforming in H1 × L2 and satisfy the inf-sup condition of Babus̆ka [3] and
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Brezzi [4]. These constraints result in finite element approximations, denoted by (uh; ph), which

hardly satisfy the continuity equation

∇ · uh(x) = 0, ∀ x ∈ Ω. (1.4)

Readers are referred to [19] and [9] for more details regarding the approximation methods and

their properties.

The recent development in discontinuous Gelerkin methods [2, 5–7, 11, 12, 14] provides new

means in solving the incompressible problems numerically. However, the corresponding finite

element solutions are usually totally discontinuous and fail to satisfy the continuity equation

(1.4) immediately [13, 23, 26, 30].

Eq. (1.4) requires that the numerical solution uh be a member of the Sobolev space H(div; Ω).

Therefore, the discontinuous Galerkin methods [13,23,26,30] may not be appropriate when (1.4)

needs to be satisfied. On the other hand, the H1×L2 conforming finite element methods require

the total continuity of uh, which is beyond what is required for a satisfaction of (1.4). There-

fore, it appears that the H(div) elements of Raviart-Thomas type [27] might be appropriate for

approximating the solution of the Navier-Stokes equations.

In [29], a finite element scheme for the Stokes equations was derived and analyzed by using

existing H(div) finite elements of the Raviart-Thomas type. The numerical solutions of the

finite element schemes developed in [29] satisfy the incompressibility constraint (1.2) exactly.

The goal of this paper is to continue our investigation in H(div) finite element methods by

extending the results of [29] to the Navier-Stokes equations. There are two main difficulties in

this extension. The first one lies on a treatment of the nonlinear term u · ∇u in designing a

numerical discretization scheme for (1.1)-(1.3). An up-winding approach shall be used to tackle

this difficulty, yielding a numerical scheme that should be stable for small viscosities. The

second difficult is associated with a mathematical analysis for the numerical scheme; namely,

one has to deal with the difficulties caused by discontinuity of the finite elements and the

corresponding integral forms over the element boundaries. Some Sobolev-type inequalities are

established to address this challenge.

This paper is organized as follows. In Section 2, we introduce some preliminaries and

notations for Sobolev spaces. A variational formula is presented in Section 3 for the Navier-

Stokes equations. In Section 4, we present a H(div) finite element method for the Navier-Stokes

equations, based on the variational formula developed in Section 3. In Section 5, we derive some

Sobolev-type inequalities for piecewise smooth functions. Section 6 is devoted to a mathematical

study of the finite element scheme. Here it was proved that the new finite element scheme has

solutions and the solutions are unique when the input data is sufficiently small. In Section 7, we

establish some optimal-order error estimates for the finite element approximations in a discrete

H1-norm for the velocity approximation and L2-norms for the pressure.

2. Preliminaries and Notations

Let D be any domain in R
n, n = 2, 3. For simplicity, we take the case n = 2 as a protocol

in the presentation and analysis. Extension to problems in three space variables is possible for

all the results to be presented in this manuscript.

We use standard definitions for the Sobolev spaces Hs(D) and their associated inner prod-

ucts (·, ·)s,D, norms ‖ ·‖s,D, and seminorms | · |s,D for s ≥ 0. For example, for any integer s ≥ 0,


