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Abstract. We consider acoustic scattering of time-harmonic waves at objects com-
posed of several homogeneous parts. Some of those may be impenetrable, giving rise
to Dirichlet boundary conditions on their surfaces. We start from the recent second-
kind boundary integral approach of [X. Claeys, and R. Hiptmair, and E. Spindler. A
second-kind Galerkin boundary element method for scattering at composite objects. BIT Nu-
merical Mathematics, 55(1):33-57, 2015] for pure transmission problems and extend
it to settings with essential boundary conditions. Based on so-called global multi-
potentials, we derive variational second-kind boundary integral equations posed in
L2(Σ), where Σ denotes the union of material interfaces. To suppress spurious reso-
nances, we introduce a combined-field version (CFIE) of our new method.

Thorough numerical tests highlight the low and mesh-independent condition num-
bers of Galerkin matrices obtained with discontinuous piecewise polynomial bound-
ary element spaces. They also confirm competitive accuracy of the numerical solution
in comparison with the widely used first-kind single-trace approach.
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1 Introduction

1.1 Acoustic scattering boundary value problem

The governing equation for acoustic scattering of time-harmonic waves is the Helmholtz
equation. In this article, we confine ourselves to the case of a globally constant principal
part given by −∆.
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Figure 1: Two-dimensional illustration of a typical geometry of a composite scatterer for L=3.

The scatterer occupies a bounded domain Ω∗⊂Rd, d=2,3. We assume a partitioning
of Ω∗ into open Lipschitz subdomains, i.e. Ω∗=

(⋃L
i=1Ωi

)
∪Ω•, where Ω denotes the clo-

sure of the domain Ω. The subdomains Ω1, ··· ,ΩL represent the different homogeneous
penetrable materials whereas the impenetrable object with Lipschitz curvilinear polygo-
nal/polyhedral boundary is given by Ω•. See Fig. 1 for a drawing of the scatterer in the
case d=2. The unbounded exterior complement of the scatterer is given by the Lipschitz
domain Ω0 := Rd\Ω∗. Like Ω1, ··· ,ΩL, also Ω0 is filled with homogeneous penetrable
material. We characterize the penetrable materials by their wave numbers κi ∈R+, for
i∈{0,1, ··· , L}. They enter the piecewise constant coefficient function κ∈L∞(Rd), κ

∣∣
Ωi
≡κi.

The impenetrable object Ω• will be modeled by imposing Dirichlet boundary conditions
at its boundary ∂Ω•.

By construction, we observe that Ωi∩Ωj =∅ for j 6= i, for indices i, j∈{•, 0,1, ··· , L}.
The boundary of the subdomain Ωi is given by ∂Ωi for i∈ {•, 0,1 ··· , L}. For Lipschitz
domains, and in particular for each Ωi, there exists a unit normal vector field ni∈L∞(∂Ωi),
ni : ∂Ωi→Rd, pointing towards the exterior of Ωi.

The interface between two subdomains Ωi and Ωj is denoted by Γij :=∂Ωi∩∂Ωj. More-

over, we introduce the so-called skeleton Σ :=
⋃L

i=0∂Ωi, the union of all boundaries of
subdomains.

In our scattering model sources are given through an incident wave, coming from in-
finity and impinging on the scattering obstacle. We assume that the source field Uinc ∈


