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Abstract. We present a technique to find threshold values that allows the user to sepa-

rate signal from noise in fluorescence grey-level images. It can be classified as a purely

comparative method based upon the amount of “Mutual Information” between two or

more florescence images, and we apply it to stacks of such images produced using

the newly-developed MELK technology. Our results are compared to results obtained

by another research group using a quite different (completely independent and more

technology-based) approach; and also to results obtained using Otsu’s Thresholding

Method, yet another completely distinct approach invented to separate foreground and

background in a grey-level image, based on minimising “intra-class variance” [9, 10].

The remarkably good agreement found suggests that our proposed comparative infor-

mation based method not only accounts for the biological mechanisms governing cellu-

lar protein networks very well, but also (and probably much more importantly) shows

that cells actually organise the spatial structure of their protein networks in a highly

non-random fashion as might be expected – and thereby try to optimise their “mutual

information content”, and thus most probably their efficiency.
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1. Introduction

Given a finite collection C of observations, each observation c ∈ C being represented

by a vector ϕ(c) = (c1, · · · , cn) ∈ R
n, there are many areas – from sensing, security, and

data mining to biology and medicine – where a pre-processing step assigning a 0,1-vector
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χ(c) = c̄ = (c̄1, · · · , c̄n) to each observation c ∈ C can be a great advantage. Clearly, it is

appropriate that this assignment be monotone (i.e. c, d ∈ C , i ∈ {1, · · · , n}), that ci ≤ di

should always imply c̄i ≤ d̄i, and that it should maximise the “surprise” (or the “mutual

information content”) that can be found in the data, following the “surprisology" paradigm

proposed in [14].

The monotonicity requirement is easily met, by choosing a threshold or ‘cut-off’ vector

t= (t1, · · · , tn) ∈ R
n that allows us to define a monotone map

ψt : Rn→ {0,1}n : (x1, · · · , xn) 7→ ( x̄1, · · · , x̄n)

by putting

x̄ i :=

(

1 if x i ≥ t i ,

0 otherwise

for all i = 1, · · · , n. When composed with ϕ, this yields the required {0,1} vector c̄ =

ψt(c1, · · · , cn) =ψt

�

ϕ(c)
�

for each observation c ∈ C .

We follow the basic exposition already outlined in [2], by assuming that the mutual

independence of the observed values ci , i ∈ {1, · · · , n} of any observation c ∈ C (i.e. over

all observations in C ) would not yield a surprise. Then one can measure the ‘amount

of surprise’ encountered when associating a {0,1} vector χ(c) =
�

χ1(c), · · · ,χn(c)
�

to

each c ∈ C , by comparing the observed probability distribution pχ defined for each ǫ =

(ǫ1, · · · ,ǫn) ∈ {0,1}n by

pχ(ǫ) :=
#{c ∈ C |χ(c) = ǫ}

#C
(1.1)

with the expected probability distribution qχ defined by

qχ(ǫ) :=

n
∏

i=1

#{c ∈ C |χi(c) = ǫi}

#C
. (1.2)

Given the independence of the coordinates, note that qχ would essentially coincide with

pχ . Consequently, noting that ǫ ∈ {0,1}n and qχ(ǫ) = 0 always implies pχ(ǫ) = 0, the

well-known Kullback-Leibler Divergence or Mutual-Information Function

M I(qχ → pχ) :=
∑

ǫ∈{0,1}n
pχ(ǫ) log

�

pχ(ǫ)

qχ(ǫ)

�

(1.3)

(with pχ(ǫ) ln(pχ(ǫ)/qχ(ǫ)) := 0 for pχ(ǫ) = 0) appears to be a good measure of that

‘amount of surprise’ encountered by the map χ :C → {0,1}n (see e.g., [11], for its various

virtues) . Thus to each cut-off vector t ∈ Rn one can associate its surprise value surp(t) =

surp(C ,ϕ)(t) defined by

surp(t) := M I(qψt◦ϕ → pψt◦ϕ), (1.4)

and declare a cut-off vector t to be (C ,ϕ)-optimal if

surp(t)≥ surp(t′)


