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Abstract. Many physical problems involve unbounded domains where the physical
quantities vanish at infinities. Numerically, this has been handled using different tech-
niques such as domain truncation, approximations using infinitely extended and van-
ishing basis sets, and mapping bounded basis sets using some coordinate transforma-
tions. Each technique has its own advantages and disadvantages. Yet, approximating
simultaneously and efficiently a wide range of decaying rates has persisted as major
challenge. Also, coordinate transformation, if not carefully implemented, can result in
non-orthogonal mapped basis sets. In this work, we revisited this issue with an em-
phasize on designing appropriate transformations using sine series as basis set. The
transformations maintain both the orthogonality and the efficiency. Furthermore, us-
ing simple basis set (sine function) help avoid the expensive numerical integrations. In
the calculations, four types of physically recurring decaying behaviors are considered,
which are: non-oscillating and oscillating exponential decays, and non-oscillating and
oscillating algebraic decays. The results and the analyses show that properly designed
high-order mapped basis sets can be efficient tools to handle challenging physical
problems on unbounded domains. Decay rate ranges as large of 6 orders of magni-
tudes can be approximated efficiently and concurrently.
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1 Introduction

As known, physical phenomena are modeled and represented mathematically by sets of
differential equations with appropriate conditions (initial and/or boundary conditions).
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A small number of these differential equations can be solved analytically and hence nu-
merical methods are routinely used to solve such problems. Therefore, numerous meth-
ods have been developed accordingly. They can be categorized into two general classes,
namely, mesh-based and mesh-free methods [1–8]. In mesh-based methods, the computa-
tional window is spatially discretized (meshed) in a priori. The resulted predefined mesh
is then utilized using low-order and localized basis sets to solve the considered differ-
ential equations in different ways [8]. The most commonly used mesh-based numerical
methods are finite different methods (FDM) and finite element methods (FEM). Obvi-
ously, these methods scale up exponentially with the space dimension (D); i.e. O(ND).
So, they become computationally very expensive for D>2 [5, 9, 10]. However, for highly
sparse matrices, better scaling can be achieved by further exploitation of the sparsity and
by imposing locality to reduce the number of required operations. For example, in the
sparse grid method, a computational cost of O(N(logN)D−1) can be achieved [9, 11, 12].
The second class is meshfree methods, where the unknown quantities are approximated
by high order basis sets without the need for the mesh [1,7]. The most known techniques
of this family are the various spectral and pseudospectral methods [2, 7, 13] including
Galerkin methods.

Recently, spectral methods (SM) have gained more attention and implementation pri-
marily because of its high-order nature, which would result in high level of accuracy with
less required computational resources (i.e. time and memory). This is because a consid-
erable portion of the formulation is handled analytically [6, 7, 14]. In these methods, the
real-space solution of a differential equation is presented in terms of a sum of certain ba-
sis or trial functions [15]. The basis functions are chosen to satisfy the constraints and
needed conditions [2, 6, 16–20]. The methods then follow the general steps of weighted
residual methods (WRM) where various weight (test) functions can be used. For more
details about spectral methods and their applications, we refer the reader to more dedi-
cated sources [1, 2, 7, 13, 15, 21].

The spectral methods have been implemented successfully for many challenging prob-
lems in bounded domains [2,7,11,22]. Basically, this is due to the finite computational do-
main and the abundance of convenient orthogonal basis sets for such bounded domains.
More development is needed to match that for unbounded domains [12,14,16,17,21]. Ac-
tually, some numerical techniques have been used to apply SM for unbounded domains;
but, with some persistent challenges. Among the commonly used techniques are the do-
main truncation, implementation of basis functions that are intrinsically unbounded, and
coordinate transformation (mapping) [12, 14, 16, 17, 21, 23].

Domain truncation is one of the most commonly used techniques in FDM and FEM,
where the infinite physical domain is represented by a finite computational window.
Consequently, it will be inevitable to have a truncation error, which is reduced by in-
creasing the size of the computation window. However, the larger computational win-
dow requires an accordingly larger number of mesh points. This can be mitigated by
adopting nonuniform meshing and boundary layers. The second approach is to use
functions like sinc and Hermite polynomials as basis sets. The computational domain


