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Abstract. Numerical atomic orbitals have been successfully used in molecular simu-
lations as a basis set, which provides a nature, physical description of the electronic
states and is suitable for O(N) calculations based on the strictly localized property.
This paper presents a numerical analysis for some simplified atomic orbitals, with
polynomial-type and confined Hydrogen-like radial basis functions respectively. We
give some a priori error estimates to understand why numerical atomic orbitals are
computationally efficient in electronic structure calculations.
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1 Introduction

In the ab-initio quantum mechanical modeling of many electron systems, Kohn-Sham
density functional theory (KS-DFT) [28, 30] achieves so far the best compromise between
accuracy and computational cost, and has become the most widely used electronic struc-
ture model in molecular simulations and materials science. Let us consider a closed-shell
system with Mn nuclei of charges {Z1,··· ,ZMn}, located at the positions {R1,··· ,RMn},
and an even number Me of electrons in the non-relativistic setting. The Kohn-Sham
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ground state energy and electron density of the system can be obtained by minimizing
the energy functional
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with respect to the orbitals {φi}
Me/2
i=1 under constraint

∫

R3 φiφj =δij, where

vext(r)=−
Mn

∑
I=1

ZI

|r−RI |
(1.2)

is the electrostatic attraction potential generated by the nuclei, ρ(r)=2∑
Me/2
i=1 |φi(r)|

2 is the
electron density, and exc[ρ] is the exchange-correlation energy per volume with electron
density ρ by a local density approximation (LDA, see [36]). The Euler-Lagrange equation
associated with this minimization problem is the well-known Kohn-Sham equation: Find
λi∈R, φi∈H1(R3) for i=1,2,··· ,Me/2, such that

∫

R3 φiφj =δij and

(

−
1

2
∆+veff[ρ]

)

φi=λiφi in R
3, i=1,2,··· ,Me/2, (1.3)

where {λi}
Me/2
i=1 are the lowest Me/2 eigenvalues, and veff[ρ]= vext+vH[ρ]+vxc [ρ] is the

effective potential with vH[ρ](r) =
∫

R3
ρ(r′)
|r−r′|dr′ being the Hartree potential for interac-

tions between electrons and vxc[ρ] being the exchange-correlation potential [36]. A self-
consistent field (SCF) iteration algorithm [33,36] is commonly resorted to for this nonlin-
ear eigenvalue problem. In each iteration, a new Hamiltonian is constructed from a trial
electronic state and a linear eigenvalue problem is then solved to obtain the low-lying
eigenvalues. The algorithm requires expansions of the eigenfunctions by a finite set of
simple known functions and discretization of the hamiltonian into a finite dimensional
matrix. The choice of basis functions is therefore important, which ultimately determines
the quality of the approximations.

Linear combination of atomic orbitals (LCAO) methods are the most widely used
discretizations by chemists, which capture the essence of the atomic-like features and
provide an intuitive description of electronic states. Generally, the atomic orbital basis
functions are products of a radial basis function and a spherical harmonic function cen-
tered at each nuclear, that is

ψInlm(r)=χInl(rI)Ylm(r̂I), I=1,··· ,Mn, (1.4)

where rI = r−RI , r= |r|, r̂= r/r, and Ylm(r̂) denotes the spherical harmonic functions on
S2. The radial basis functions χInl depends on not only a site index I, but also an an-
gular momentum quantum number l and a multiplicity index n. Among different basis


