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Abstract. It is well-known that the traditional full integral quadrilateral element fails
to provide accurate results to the Helmholtz equation with large wave numbers due to
the “pollution error” caused by the numerical dispersion. To overcome this deficiency,
this paper proposed an element decomposition method (EDM) for analyzing 2D acous-
tic problems by using quadrilateral element. In the present EDM, the quadrilateral
element is first subdivided into four sub-triangles, and the local acoustic gradient in
each sub-triangle is obtained using linear interpolation function. The acoustic gradi-
ent field of the whole quadrilateral is then formulated through a weighted averaging
operation, which means only one integration point is adopted to construct the system
matrix. To cure the numerical instability of one-point integration, a variation gradi-
ent item is complemented by variance of the local gradients. The discretized system
equations are derived using the generalized Galerkin weakform. Numerical examples
demonstrate that the EDM can achieves better accuracy and higher computational ef-
ficiency. Besides, as no mapping or coordinate transformation is involved, restrictions
on the shape elements can be easily removed, which makes the EDM works well even
for severely distorted meshes.
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1 Introduction

With the increasing demands on the acoustic performance of enclosed cavities, such as
the automotive passenger compartments and aircraft cabins, careful considerations are
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needed in designing these sophisticated products. The vibration noise is essentially
a wave propagation phenomenon governed by the Helmholtz equation, and a large
amount of research work can be found in the literature reviews [1, 2].

As the analytical solution is only available for problems with very simple configura-
tions, numerical methods for solving Helmholtz problems are becoming more and more
prevalent. Over the past several decades, many efficient algorithms such as the finite
element method (FEM) [3,4], the boundary element method (BEM) [5,6], the wave based
method (WBM) [7], the modified smoothed particle hydrodynamics (MSPH) method [8],
the hybrid-Trefftz method [9], the smoothed finite element method (SFEM) [10, 11] and
the weak Galerkin (WG) method [12], etc., have already been proposed by researchers
to simulate the acoustic scattering. Among these different methodologies, the standard
FEM is still so far the most well-developed and widely-used numerical tool in predicting
the acoustic scattering. Quadrilateral isoparametric element, which is a primary element
of FEM, plays a very important role in noise simulation. However, a well-known defi-
ciency associated with the use of quadrilateral element for the Helmholtz equation is the
loss of ellipticity as the wave number increases [13], which will inevitably leads to the
“pollution error”. At higher frequencies, the dispersion error tends to accumulate, result-
ing in completely erroneous results. Although the use of more elements per wavelength
can improve the numerical accuracy in acoustic analysis, the sufficiently refined mesh
will leads to a dramatic increase of computational cost, especially for large scale practical
acoustic problems. The accuracy of traditional quadrilateral element is also significantly
depends on the mesh quality. As pointed in [14], a severely distorted mesh will cause
a larger “pollution error”. Since isoparametric coordinate transformation is involved in
formulating the system equations, violent distorted meshes are not permitted. The third
shortcoming inherent in the conventional quadrilateral element is that it suffers from a
low computational efficiency. This is because four integration points are adopted when
performing the numerical integration, which inevitably increase the computational cost.

Studies have found that the pollution error for one-dimensional problems can be
completely eliminated by resorting to analytical solutions [15]. While for higher di-
mensions, the numerical dispersion cannot be completely avoided [16], but can be re-
duced. Over the past decades, numerous approaches to alleviating the dispersion er-
ror have been proposed by researchers, such as the Galerkin/least-squares (GLS) and
Galerkin-gradient/least-square (GGLS) methods [13,17,18], the residual-free bubbles ap-
proach (RFB) [19], the multiscale finite element method (MFEM) [20], the discontinu-
ous enrichment method (DEM) [21, 22], the weighted-averaging finite-element method
(WA-FEM) [23], the modified integration rules (MIR) method [24], the discontinuous
Galerkin method (DGM) [25,26], the partition of unity method (PUM) [27,28], the hybrid-
Trefftz quadrilateral finite element model [9] and the finite element-least square point
interpolation method (FE-LSPIM) [29, 30]. All these approaches are very promising in
controlling the pollution error, and improved the numerical accuracy compared to the
conventional quadrilateral element. However, the dispersion error in general two- and
three-dimensional acoustic problems still cannot be eliminated properly with these al-


