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Abstract. In this paper, we present accurate and economic integration quadratures for
hypersingular functions over three simple geometric shapes in R

3 (spheres, cubes, and
cylinders). The quadrature nodes are made of the tensor-product of 1-D Gauss nodes
on [−1,1] for non-periodic variables or uniform nodes on [0,2π] or [0,π] for periodic
ones. The quadrature weights are converted from a brute-force integration of the hy-
persingular function through interpolating the smooth component of the integrand.
Numerical results are presented to validate the accuracy and efficiency of computing
hypersingular integrals, as in the computations of Cauchy principal values, with a
minimum number of quadrature nodes. The pre-calculated quadrature tables can be
then readily used to implement Nyström collocation methods of hypersingular vol-
ume integral equations such as the one for Maxwell equations.
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1 Introduction

The computation of hypersingular integrals associated with Cauchy principal values
(CPVs) is the most time consuming and challenging task in solving integral equations
for many mathematical physics equations, for example, Maxwell equations, elasticity
equations, etc. The CPV is defined by the integration of the singular function by first
excluding a small volume around the singularity, then letting the size of the exclusion
volume shrink to zero to produce the CPV. Namely, the CPV is defined as

p.v.
∫

Ω

f (r)

|r−r′|k dr= lim
δ→0

∫

Ω\Vδ(r′)

f (r)

|r−r′ |k dr, (1.1)
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where Ω is a bounded domain in R3 assumed to be a cube, rectangular prism, cylinder,
or sphere in this paper and Vδ(r

′) is an exclusion volume centered at r′ of spherical shape
of radius δ.

The objective of this paper is to develop an accurate and efficient quadrature for-
mula to compute the integral over Ω\Vδ(r

′) in (1.1). For any fixed δ > 0, the integral
over domain Ω\Vδ(r

′) can be calculated by a naive brute-force approach to a given ac-
curacy if a large number of sample points are used. Fortunately, the function f (r) in
the numerator, which can take a general form in the integral equation method, is often
smooth; therefore, f (r) can be well represented through an interpolation of its values on
the three-dimensional tensor product of 1-D Gauss quadrature or midpoint nodes. Us-
ing this simple fact, any brute-force integration quadrature involving a large number of
values of f (r) can be converted into an equivalent quadrature formula using only values
at the small number of nodes of a tensor-product form in Ω. Moreover, the new weights
on the tensor-product nodes can be pre-computed and tabulated to be used for a general
function f (r). This will be the approach in this paper, and the resulting weights have been
used to calculate the matrix entries for a discretized Nyström volume integral equation
for Maxwell equations in [1] where the issue of CPV limit is also addressed. There are
other approaches in computing the CPV in (1.1), including direct evaluations of hyper-
singular integrals [2].

The rest of this paper will be organized as follows. In Section 2, we will describe
the interpolation approach for constructing a quadrature formula for singular integra-
tions over the domain Ω\Vδ(r

′) on tensor-product nodes. In Sections 3 through 5, we
present specific implementations of interpolated quadrature when Ω is a cube, cylinder,
and sphere, respectively. In Section 6, we provide an outline of the resulting algorithm
that is implemented in computer code. In Section 7, numerical tests are included for each
domain. In the appendix, quadrature weights over some tensor-product nodes are given
for singular integrals over each domain.

2 Quadrature formula over tensor-product nodes

Consider a hypersingular integrand formed by the product of some smooth function f (r)
with a singular kernel 1/|r−r′ |k over a domain Ω, where the singularity is at r′∈Ω and
k can be 1, 2, or 3, i.e.,

∫

Ω\Vδ(r′)

f (r)

|r−r′|k dr. (2.1)

First, assume we have an N point quadrature rule that uses points r̂i and weights ŵi,

∫

Ω\Vδ(r′)

f (r)

|r−r′ |k dr≈
N

∑
i=1

f (r̂i)

|r̂i−r′|k ŵi. (2.2)

As the function f (r) is generally smooth, it can be well approximated through an
interpolation of its values over a small number of tensor-product nodes {ri}|Mi=1. Letting


