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Abstract. A direct Arbitrary Lagrangian Eulerian (ALE) method based on multi-mo-
ment finite volume scheme is developed for the Euler equations of compressible gas
in 1D and 2D space. Both the volume integrated average (VIA) and the point values
(PV) at cell vertices, which are used for high-order reconstructions, are treated as the
computational variables and updated simultaneously by numerical formulations in in-
tegral and differential forms respectively. The VIAs of the conservative variables are
solved by a finite volume method in the integral form of the governing equations to
ensure the numerical conservativeness; whereas, the governing equations of differen-
tial form are solved for the PVs of the primitive variables to avoid the additional source
terms generated from moving mesh, which largely simplifies the solution procedure.
Numerical tests in both 1D and 2D are presented to demonstrate the performance of
the proposed ALE scheme. The present multi-moment finite volume formulation con-
sistent with moving meshes provides a high-order and efficient ALE computational
model for compressible flows.
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1 Introduction

Moving boundary problems exist widely in the practical applications of computational
fluid dynamics (CFD), such as airfoil oscillations, flapping wings or fluid-structure inter-
actions. When the boundary of fluid domain moves or undergoes deformations, the Ar-
bitrary Lagrangian Eulerian method (ALE) [1,2] becomes a desirable numerical method-
ology to solve fluid dynamics in a moving and deforming grid which can fit the moving
boundary of computational domain and get more accurate numerical solutions. In the
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ALE formulations, the grids of the computational domain can move arbitrarily indepen-
dent of the fluid motions. This flexibility of mesh motion makes it more robust compared
to the purely Lagrangian framework which may encounter difficulties when the mesh
cells tangle or experience other topological changes due to flow fields of large distortions.

Efforts have been made so far to develop practical ALE algorithms. The existing
works may be divided into two classes, i.e. indirect method and direct method. The
indirect method was firstly proposed by Hirt et al. [1], which consists of three phases:
(1) a Lagrangian phase where the solution and the grid are updated; (2) a rezoning phase
that regularizes the tangled or heavily distorted mesh cells; (3) a remapping phase in
which the Lagrangian solution is transferred to the rezoned mesh adjusted in step (2).
However, rezoning and remapping procedures can be computationally expensive espe-
cially for two and three dimensional realistic calculations. The direct method [3, 4] does
not need the remapping as a separate step because the mesh velocity is already taken into
account in the numerical formulations that are consistent with the governing equations
in the moving mesh framework. Both types of methods are widely implemented in the
simulations of fluid dynamics.

In ALE schemes, the mesh geometry changes in time, which requires the geometrical
quantities, such as volumes, boundary surfaces and vertices of moving cells, to be up-
dated at each time step. Some existing works started from purely Lagrangian framework
for developing mesh moving problems. Munz et al. [5] devised a cell-centered Godunov-
type scheme using Roe [6] and HLL [7] flux solvers for Lagrangian hydrodynamics equa-
tions. Maire et al. [8–10] built a relationship between nodal displacement and flux for-
mulation and presented a robust cell-centered Lagrangian method on multi-dimensional
meshes with first and second order accuracy. To achieve high order accuracy, Cheng et
al. [11] developed a class of Lagrangian type schemes based on high order essentially
non-oscillatory (ENO) [12] reconstruction and obtained third order accuracy with curved
mesh in [13]. Dumbser et al. [14] proposed a one-dimensional high order Lagrangian
ADER (arbitrary high-order accurate) finite volume method. Besides, the Discontinuous
Galerkin (DG) method has also been used to solve the gas dynamics equations in the total
Lagrangian formulation for high-order accuracy [15]. These purely Lagrangian methods
move mesh cells with the flow velocity so that the advection terms are removed from
the governing equations. Particular care must be paid when the mesh is distorted to an
unacceptable extent. A remedy is to improve the mesh quality with subsequent rezoning
and remapping steps, which results in the indirect ALE method.

These Lagrangian methods can also be extended to direct ALE methods. High or-
der discontinuous Galerkin (DG) direct ALE method has been implemented in [3, 16, 17]
for compressible Euler equations. In the conventional finite volume framework, the di-
rect ALE scheme can be constructed upon cell-centered Lagrangian solver completed
with an edge-based upwinded formulation of the numerical fluxes as presented in [18].
Moreover, Boscheri et al. developed high-order direct ALE ADER finite volume schemes
in [4, 19] with WENO (weighted essentially non-oscillatory) reconstruction and MOOD
(multi-dimensional optimal order detection) approach. In this paper, we focus on direct


