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AN APPROXIMATE ALGORITHM TO SOLVE LINEAR

SYSTEMS BY MATRIX WITH OFF-DIAGONAL EXPONENTIAL

DECAY ENTRIES

QIANGSHUN CHANG, YANPING LIN, AND SHUZHAN XU

Abstract. We present an approximate algorithm to solve only one variable out of a linear system
defined by a matrix with off-diagonal exponential decay entries (including the practically most
important class of band limited matrices) via a sub-linear system. This approach thus enables us
to solve any subset of solution variables. Parallel implementation of such approximate schemes
for every variable enables us to solve the linear system with computational time independent of
the matrix size.
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1. Introduction and motivations

How to solve a large linear system Ax = f is a key topic of practical importance.
Direct approaches (like Gauss elimination and various decomposition schemes, such
as LU and QR, are used mainly for small matrices) are theoretically precise yet
practically forbidden for large linear systems in general due to computational cost.
Iterative approaches (such as Jacobi, Gausss-Seidel, SOR and CG iteration, [8, 19])
and multigrid methods [17] are approximate methods and basically ”the practi-
cal schemes”. For iterative methods, the matrix condition number (defined as

cond(A) = max
||x||2=1

||Ax||2
‖x‖2

=
λmax

λmin
, where λmax and λmin are the maximum and

the minimum eigen-values of A respectively) usually decides their convergence rates
and the matrix ”sparsity” (i.e. number of non-zero entries in A) decides their com-
putation costs. Iteration by nature, the convergence speed of multigrid methods is
independent of the matrix condition numbers though [12, 17]. For linear systems
derived from numerical differential equations via finite difference [16] or finite el-
ement [14], the matrix sizes are generally decided by the size of domain and the
approximation accuracies required. Domain decomposition ([12, 13], to split the
original problem into problems with smaller domains) and preconditioning ([11], to
transform the matrix for better condition number) studies are trying to deal with
large matrices and poor matrix condition numbers. They are usually ”geometrical”
methods linked to the original problem. Algebraic multigrid, a special iterative
method [17], is based on the algebraic properties of the final linear systems mainly.

Heading in a different direction, there are also lot of recent progress trying to
reduce the number of computations and to split the matrices (i.e. different de-
composition schemes). Almost purely algebra in nature, these works try to solve
the linear system efficiently by looking at the matrix structure directly. The first
approach is the work on semiseparable matrices (also been used for symmetric
eigen-value problems) [18]. A symmetric matrix can be transformed into tridiago-
nal, semiseparable or with diagonal plus semiseparable form (free diagonal choice)
via orthogonal similarity or Lanczos-like reduction. Efficient algorithms can then be
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devised accordingly [18]. For example, Crout algorithm can be applied to solve the
tridiagonal form and efficient QR-factorization approach can be used to solve the
semiseparable form. Another approach is H-matrices [2] with the aim of enabling
matrix operations in almost linear complexity. The key technique is to applying
local matrix approximation via matrices that is product of two vectors. Based
on Taylor series analysis of kernel log |x − y|, local matrix approximation can be
applied with low rank approximation of matrix blocks. Almost linear complexity
algorithm can then be devised via cluster tree partition technically. We emphasize
that these techniques, easier to apply with efficiency for small matrices, can be
applied on top of our scheme since our approach is to decompose the system into
smaller systems first. Future work combining these ideas with decomposition most
likely will further refine our algorithm.

Last but not least, we mention algebraic Schwarz or algebraic domain decom-
position methods which are mostly related to our work [1, 15, 20]. They are it-
erative approaches via Schwarz alternating in algebraic form and can actually be
viewed more clearly in its elliptic problem theoretical background. H. A. Schwarz’s
study of Dirichlet problem on overlapping regions provided the fundamental alter-
nating solution approach (numerically a different way of iteration). The elegant
and insightful analysis of P. L. Lions and O. B. Widlund [5, 9, 10] are recent re-
interpretations and further developments (for example parallel algorithms) of this
classical direction. Amazingly enough, our very first feeling is that these projec-
tion analysis techniques might be borrowed and modified for the iterative turbo
decoding analysis. It is also interesting to recall that turbo codes was invented by
C. Berrou, A. Glavieux and P. Thitimajshima in 1993 from France (see references
in [7]). Secondly and most importantly, we feel that the connection between it-
erative algebraic domain decomposition and our direct approach to be presented
deserves serious further investigation (in particular the Dirichlet problem counter
part analysis).

In our effort starting with algebraic multigrid looking for schemes to make the
matrix to have better condition number and to decompose large linear systems, we
found a fast approximate algorithm capable of breaking the matrix size (for special
classes of matrices of course) to be presented here. This algorithm seems can be
used in many areas beyond numerical partial differential equations. It thus justifies
an independent paper. Our main contribution is the algorithm capable of solving
a single variable by solving a smaller linear system in some special large linear
systems with controllable error. Even can be further elaborated and extended, we
mainly study matrices with off-diagonal exponential decay entries for simplicity
and practical efficiency. Counter examples show easily that our algorithm is not
valid for all matrices. For practical implementation concerns, we also present exact
conditions for a matrix to be with off-diagonal exponentially decay entries.

Let us look at some simple symmetric positive definite matrix examples with
exponential decay entries to build up our intuitions for further analysis. For A =
( a c
c d ), where a > 0, d > 0, a >> c, and d >> c. Linear equation Ax = b1 has

solutions x = (db1− cb2)/(ad− c2) and x2 = (ab2− cb1)/(ad− c2). We can see that

lim
c→0

x1 =
b1
a

and lim
c→0

x2 =
b2
d
. That is solutions of ( a c

c d ) (
x1
x2
) =

(

b1
b2

)

are close to

solutions of ( a 0
0 d ) (

x1
x2

) =
(

b1
b2

)

, which is a compressed form with c set to zero. Let’s
ponder on this observation and extend our analysis to a larger matrix. Suppose

A =
(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)

is symmetric positive definite and with off-diagonal exponential


