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Abstract. This paper presents a high order time discretization method by combin-
ing the semi-implicit spectral deferred correction method with energy stable linear
schemes to simulate a series of phase field problems. We start with the linear scheme,
which is based on the invariant energy quadratization approach and is proved to be
linear unconditionally energy stable. The scheme also takes advantage of avoiding
nonlinear iteration and the restriction of time step to guarantee the nonlinear system
uniquely solvable. Moreover, the scheme leads to linear algebraic system to solve at
each iteration, and we employ the multigrid solver to solve it efficiently. Numerical re-
sults are given to illustrate that the combination of local discontinuous Galerkin (LDG)
spatial discretization and the high order temporal scheme is a practical, accurate and
efficient simulation tool when solving phase field problems. Namely, we can obtain
high order accuracy in both time and space by solving some simple linear algebraic
equations.

AMS subject classifications: 65M60, 35L75, 35G25

Key words: Phase field problems, local discontinuous Galerkin method, linear scheme, invariant
energy quadratization approach, semi-implicit spectral deferred correction method.

1 Introduction

The phase field model has been used successfully for modeling a variety of interfacial
phenomena like microstructure evolution [3] and the physics of phase transitions [16].
The key idea of phase field model is to replace the sharp interface by a thin transition
lays, it takes two distinct values (for instance, +1 and −1) in each of the phases, with
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a smooth change between both values in the zone around the interfaces, which is then
diffused with a finite width.

In the phase field model, the dynamics of the underlying physical system is gen-
erally described by a gradient flow resulting from the Euler-Lagrangian variation of a
pre-defined energy form with embedded phase-field functions. However, the gradient
flow, in the form of high order stiff partial differential equations (PDEs), poses a great
deal of difficulty for numerical simulations [24, 39]. Namely, high resolution simulation
is preferred in order to capture the generally sharp interfacial structures and to provide
numerical solution with fidelity. In addition, the model itself experiences long time evo-
lution therefore computational efficiency is essential to map out the whole dynamics from
initial state to steady state.

Various numerical simulations have been developed for phase field problems re-
cently, especially for temporal discretization, which mostly are the convex splitting
schemes [4, 10, 12–14, 18, 19, 21, 23, 27, 28], the stabilized linear schemes [11, 17, 20] and
others [1, 29]. In the convex splitting scheme, one first splits the energy into convex and
nonconvex parts. Then one discretizes the terms of the variational derivative implicitly
for the convex part, and explicitly for the nonconvex part of the energy respectively. The
resulting convex splitting schemes are unconditionally energy stable. However, they are
nonlinear in most cases, which results in nonlinear systems, hence iterative methods are
necessary. Moreover, as for the unique solvability of the nonlinear scheme, the proof is
not easy. In some cases, nonlinear schemes also require very small time step to guarantee
the unique solvability. While for the stabilized linear scheme, the term from the nonlin-
ear potential is simply treated explicitly and some linear stabilizing terms are added to
improve the stability. The resulting linear schemes are simple and easy to implement.
However, the energy stability depends on the boundedness of the numerical solution,
which is not satisfied for most phase field models. In such case, the stabilized linear
scheme fails to preserve the energy stability.

In order to overcome the difficulties mentioned above, one hopes to construct a linear
scheme which preserves the energy stability. Yang et al. developed a novel scheme based
on the invariant energy quadratization (IEQ) approach and have been successfully used
to solve the molecular beam epitaxial (MBE) growth model [2,34], the phase field crystal
model [32] and various gradient flows [31, 33, 35–38]. The numerical scheme using the
IEQ approach takes the following advantages: 1) It is unconditionally energy stable. 2) It
is easy to construct the second order scheme, thus more accurate. 3) It is linear and thus
easy to implement and efficient. Inspired by the idea, the IEQ approach can be applied to
solve other phase field problems automatically, for example, the Allen-Cahn (AC) equa-
tion, the Cahn-Hilliard (CH) equation and the Cahn-Hilliard-Hele-Shaw (CHHS) system.
The linear scheme is unconditionally energy stable and easy to implement. However, it
is only first order or second order accurate in time, and not straightforward to extend to
higher order ones. In this paper, we will apply the semi-implicit spectral deferred cor-
rection (SDC) method [15] to improve the temporal accuracy, which borrows the linear
unconditionally stable method as the basis scheme. We only pay attention to some clas-


