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Abstract. We develop a second order well-balanced finite volume scheme for com-
pressible Euler equations with a gravitational source term. The well-balanced property
holds for arbitrary hydrostatic solutions of the corresponding Euler equations without
any restriction on the equation of state. The hydrostatic solution must be known a
priori either as an analytical formula or as a discrete solution at the grid points. The
scheme can be applied on curvilinear meshes and in combination with any consis-
tent numerical flux function and time stepping routines. These properties are demon-
strated on a range of numerical tests.
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1 Introduction

The Euler equations with gravitational source term are used to model the flow of gases
in different fields of physical sciences. Examples include weather prediction, climate
modeling, and several astrophysical application such as the modeling of stellar interiors.
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In many of these applications, the gas state is close to a hydrostatic solution. Hydrostatic
solutions are non-trivial steady state solutions of the Euler equations with gravity which
can be described using the differential equation Vp(x) = —p(x)V(¢(x)), where p is the
gas pressure, p is the gas density and ¢ is a given external gravitational potential. In order
to resolve the flow dynamics, which can be seen as small perturbations of the hydrostatic
solution, one has to be able to maintain the corresponding hydrostatic solution with a
sufficiently small error. Conventional methods introduce a significant discretization error
when trying to compute small perturbations of the hydrostatic solution, especially on
coarse meshes. Since the computational effort using sufficiently fine meshes can be too
high, especially in three-dimensional simulations, special numerical techniques for this
problem have been developed called well-balanced schemes. Well-balanced schemes are
able to maintain hydrostatic solutions close to machine precision even on coarse meshes.

Well-balanced schemes have been developed for the well-known shallow water equa-
tions with non-flat bottom topography. The equation describing steady state solutions
in the shallow water equations is given in an explicit algebraic form which favors the
development of well-balanced schemes. Some examples are [1,31]. There are also well-
balanced schemes for related models, like e.g. the Ripa model [13,37]. More recently,
well-balanced schemes for Euler equations with gravitational source term have been de-
veloped. This is more delicate than for shallow water equations since the hydrostatic
solutions are given implicitly via a differential equation. For different equations of state
(EoS) different hydrostatic solutions can be found. This led to the development of well-
balanced schemes which are restricted to certain EoS and classes of hydrostatic solu-
tions. Early work on this topic has been conducted by Cargo and Le Roux [5]. LeVeque
and Bale [23] applied a quasi-steady wave-propagation algorithm on the Euler equa-
tions with gravitational source term to maintain isothermal hydrostatic solutions numer-
ically. This method has been expanded to isentropic solutions in [24]. Even for high order
schemes well-balancing is necessary if solutions close to a hydrostatic solution are com-
puted [40]. A high order well-balanced scheme for isothermal hydrostatic solutions is
introduced in [40]. The scheme includes a modified weighted essentially non-oscillatory
(WENO) reconstruction and a suitable way to discretize the source term. Based on this
idea, a non-staggered central scheme for the same class of hydrostatic solutions has been
proposed in [38]. Compact reconstruction WENO methods are applied to achieve well-
balancing in [17]. Discontinuous Galerkin (DG) well-balanced methods have been devel-
oped in [8,25,26]. The well-balanced method proposed in [9] is based on a reformulation
of the Euler equations with gravity discretized using a central scheme.

Another approach to achieve well-balancing for Euler with gravitational source term
is the development of well-balanced relaxation schemes, see [11, 12, 35] and references
therein. Here stable approximate Riemann solvers are constructed for well-balancing.
Methods based on hydrostatic reconstruction were first developed by Audusse et al. [1]
for the shallow water equations. Later they have been adapted for the Euler equations
with gravitational source term, see e.g. [7]. Early applications for weather prediction can
be seen in [3].



