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Abstract. Stress boundary conditions for the lattice Boltzmann equation that are con-
sistent to Burnett order are proposed and imposed using a moment-based method.
The accuracy of the method with complicated spatially-dependent boundary condi-
tions for stress and velocity is investigated using the regularized lid-driven cavity flow.
The complete set of boundary conditions, which involve gradients evaluated at the
boundaries, are implemented locally. A recently-derived collision operator with mod-
ified equilibria and velocity-dependent collision rates to reduce the defect in Galilean
invariance is also investigated. Numerical results are in excellent agreement with ex-
isting benchmark data and exhibit second-order convergence. The lattice Boltzmann
stress field is studied and shown to depart significantly from the Newtonian viscous
stress when the ratio of Mach to Reynolds numbers is not negligibly small.
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1 Introduction

Since its initial developments [1-3], the lattice Boltzmann method (LBM) has become an
established branch of computational fluid dynamics (CFD). Its foundations can appear
to be conceptually different from traditional methods of CFD: rather than discretising
continuum mass, momentum, and possibly constitutive equations directly, the LBM is
derived from a velocity-space truncation of Boltzmann’s equation for gases [4]. This ki-
netic formulation yields a linear, constant coefficient hyperbolic system of equations in
which all nonlinearities are confined to algebraic source terms. The linear differential op-
erators are discretised exactly by integrating along their characteristics and the govern-
ing equations of motion are recovered by seeking slowly varying solutions to the kinetic
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equation. The locality of the lattice Boltzmann algorithm gives it the opportunity to ex-
ploit massively parallel modern computer architectures, including graphics processing
units (GPUs), leading to very fast computations [5].

The lattice Boltzmann equation converges with second-order accuracy in grid spacing
to the solution of the discrete Boltzmann equation, which at fixed Mach and Reynolds
numbers differ from the (weakly) compressible Navier-Stokes equations only by finite
Mach number artefacts and O(Kn?) contributions to the stress, where Kn is the Knudsen
number [6-8]. By von-Karman’s relation, Kn o< Ma/ Re. The finite Mach number errors in
standard lattice Boltzmann models are of order O(Ma?®). They appear in the stress tensor
and break Galilean invariance. They arise because the discrete Maxwellian equilibria are
truncated at second-order in velocity and cannot be removed completely on the standard
nearest neighbour integer lattices that are commonly in use (e.g D2Q9, D3Q15, D3Q19,
or D3Q27 lattices). Hazi and Kavran [9] proposed adjusting the third order moment to
restore Galilean invariance in axis-aligned shear flows but defects still existed in the diag-
onal components of the momentum flux tensor. Building on this, Dellar [10] showed that
these defects can be eliminated when the LBM density is constant and reduced to O(Ma°)
otherwise if a collision operator with velocity-dependent relaxation times is used. A sim-
ilar approach was proposed by Geier et al. [11] to reduce the defects under diffusive
scaling by adjusting the equilibria in the cumulant lattice Boltzmann method.

Although usually neglected, the deviatoric stress that is naturally embedded in the
LBM moment PDE system is governed by non-Newtonian constitutive equation that in-
cludes “Burnett order” contributions, as shown by Dellar [12]. Thus, computations of the
stress with the LBM with large relaxation times can yield physically meaningful results
that do not agree with the Navier-Stokes equations. This has implications for lattice Boltz-
mann methods for rarefied flow, the LBM at low Reynolds numbers, and the calculation
of forces on bodies using the LBM (since the non-equilibrium contribution to the moment
flux HS;) =—(0a1g+0p1,)+O(1?)) and, as discussed in detail here, the implementation
of boundary conditions. Imposing stress boundary conditions that are local, second-
order accurate, and consistent with the moments of the truncated Boltzmann PDE is not
easily achieved with most lattice Boltzmann implementations. Furthermore, the stress
at a boundary may depend on the velocity in a non-trivial way and even constraints on
the velocity field can be difficult to implement precisely with lattice Boltzmann when
Uy = Ugpay (X) is not constant.

At first, imposing boundary conditions on the lattice Boltzmann algorithm appears
straightforward: one must supply values for the distributions f; (see equation 2.1) on
“incoming” characteristics pointing into the domain. The popular D2Q09 lattice (Fig. 2)
has three unknown incoming distributions at boundaries aligned with grid points and
lattice Boltzmann boundary conditions specify the values of these distribution functions
in terms of those that are known. Incoming distributions at boundary nodes can be de-
termined by a simple reversal in the particles’ velocity; an approach known as “bounce-
back”. Some steady state solutions of the linearised (continuous) Boltzmann equation



