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Abstract

In this paper we propose a finite element method for solving elliptic equations with

observational Dirichlet boundary data which may subject to random noises. The method is

based on the weak formulation of Lagrangian multiplier and requires balanced oversampling

of the measurements of the boundary data to control the random noises. We show the

convergence of the random finite element error in expectation and, when the noise is sub-

Gaussian, in the Orlicz ψ2-norm which implies the probability that the finite element error

estimates are violated decays exponentially. Numerical examples are included.
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1. Introduction

In many scientific and engineering applications involving partial differential equations (PDEs),

the input data such as sources or boundary conditions are usually given through the measure-

ments which may subject to random noises. For example, in the application of seismic imag-

ing/inversion problems, the measurements are the wave field collected on the surface of the

ground which are inevitably polluted by random noises. The collected date will serve as the

boundary value for the governing wave equation or Helmholtz equation to find the subsurface

structure by some imaging or inversion algorithms (see, e.g., [21], [6]). In this paper, as the first

effort to design numerical methods which control both the discretization and random noise er-

ror simultaneously for solving PDEs with random input data, we consider the Laplace equation

with Dirichlet observational boundary data.
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Let Ω ⊂ R
2 be a bounded domain with a smooth boundary Γ. In this paper we consider

the problem to find u ∈ H1(Ω) such that

−∆u = f in Ω, u = g0 on Γ. (1.1)

Here f ∈ L2(Ω) is given but the boundary condition g0 ∈ H2(Γ) is generally unknown. Here we

assume the boundary condition g0 ∈ H2(Γ) since our measurements are pointwise on the bound-

ary, this is also what one usually encounters in practice. We assume we know the measurements

gi = g0(xi) + ei, i = 1, 2, · · · , n, where T = {xi : 1 ≤ i ≤ n} is the set of the measurement

locations on the boundary Γ and ei, i = 1, 2, · · · , n, are independent identically distributed

random variables over some probability space (X,F ,P) satisfying E[ei] = 0 and E[e2i ] = σ2 > 0.

In this paper P denotes the probability measure and E[X ] denotes the expectation of the ran-

dom variable X . We remark that for simplicity we only consider the problem of observational

Dirichlet boundary data in this paper and the problem with observational sources f or other

type of boundary conditions can be studied by the same method. We also remark that the

extension of the results in this paper to higher dimension PDEs is an interesting problem worth

of future investigations.

The classical problem to find a smooth function from the knowledge of its observation at

scattered locations subject to random noises is well studied in the literature [24]. One popular

model to tackle this classical problem is to use the thin plate spline model [11,22] which can be

efficiently solved by using finite element methods [1, 7, 17]. The scattered data in our problem

(1.1) are defined on the boundary of the domain and a straightforward application of the

method developed in [1, 7, 11, 17, 22] would lead to solving a fourth order elliptic equation on

the boundary which would be much more expansive than the method proposed in this paper.

If the boundary condition g0 is smooth and it does not have noise, the standard finite element

method to solve (1.1) would be to enforce the Dirichlet boundary condition nodewise on the

boundary. If the boundary data contain noise, however, the aforementioned standard finite

element method does not work and our crucial finding is that one must enforce the Dirichlet

condition in some weak sense. Our method is based on the following weak formulation of

Lagrangian multiplier for (1.1) in [2]: Find (u, λ) ∈ H1(Ω)×H−1/2(Γ) such that

(∇u,∇v) + 〈λ, v〉 = (f, v), ∀v ∈ H1(Ω), (1.2)

〈µ, u〉 = 〈µ, g0〉, ∀µ ∈ H−1/2(Γ), (1.3)

where (·, ·) is the duality pairing between H1(Ω) and H1(Ω)′ which is an extension of the inner

product of L2(Ω) and 〈·, ·〉 is the duality pairing between H−1/2(Γ) and H1/2(Γ) which is an

extension of the inner product of L2(Γ). We remark that while the method of Lagrangian

multiplier is one of the standard ways in enforcing Dirichlet boundary condition on smooth

domains, it is essential here for solving the problem with Dirichlet observational boundary data

even when the domain Ω is a polygon. One may apply the techniques developed in this paper

to other weak formulations such as mixed finite element method or those in [18] to deal with

observational Dirichlet boundary data.

Let Ωh be a polygonal domain which approximates the domain Ω. Let Vh ⊂ H1(Ωh) and

Qh ⊂ L2(Γ) be the finite element spaces for approximating the field variable and the Lagrangian

multiplier. Our finite element method is defined as follows: Find (uh, λh) ∈ Vh ×Qh such that

(∇uh,∇vh)Ωh
+ 〈λh, vh〉n = (Ihf, vh)Ωh

, ∀vh ∈ Vh,

〈µh, uh〉n = 〈µh, g〉n, ∀µh ∈ Qh,


