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ERROR ESTIMATES IN BALANCED NORMS OF FINITE
ELEMENT METHODS FOR HIGHER ORDER
REACTION-DIFFUSION PROBLEMS

SEBASTIAN FRANZ AND HANS-G. ROOS

Abstract. Error estimates of finite element methods for reaction-diffusion problems are often
realised in the related energy norm. In the singularly perturbed case, however, this norm is not
adequate. A different scaling of the H™ seminorm for 2m-th order problems leads to a balanced
norm which reflects the layer behaviour correctly. We prove error estimates in such balanced
norms and improve thereby existing estimates known in literature.
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1. Introduction

We shall examine the finite element method for the numerical solution of a
singularly perturbed linear elliptic 2m—th order boundary value problem in two
dimensions. In the weak form it is given by

(1) eZF(V™u, V™) + a(u,v) = (f,v) Yo € H(Q),

where Q@ = (0,1)%, 0 < ¢ < 1 is a small positive parameter, 1 < k < m and
f is sufficiently smooth. We assume that the bilinear form af(-,-) is related to a
2(m — k)—th order operator and a(u,u) is equivalent to [|ul|%;,._.

The Lax-Milgram theorem tells us that the problem has a unique solution u €
Hy(Q) which is sufficiently smooth for smooth data and satisfies in the energy
norm

(2) Ml := elulmn + lull gm-—r S 1£]lz2-

Here and in the following we use the following notation: if A < B then there exists
a (generic) constant C independent of € (and later also of the mesh used) such that
A< CB.

The error of a finite element approximation ¥ € V'V satisfies

_uN < i —_ N

(3) [Ju=w™ll. 5 min |l = o™,
for any finite dimensional space VY C H* ().

If we use O™ '-splines, piecewise polynomial of degree 2m — 1, on a properly
defined Shishkin mesh with IV cells in each direction, then one can prove for the
interpolation error of the Hermite interpolant u! € V¥

) H’u_ulms,s (51/2(N711DN)m+N*(m+1)).

It follows that the error u — u” also satisfies such an estimate. Some special one-
dimensional cases are discussed, for instance, in [4,14,15].
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However, a typical boundary layer function e™~* exp(—x/¢) of our given problem
measured in the norm |[||-||, is of order O (¢/2). Consequently, error estimates in
this norm are less valuable as for convection diffusion equations. Therefore, we ask
the fundamental question:

Is it possible to prove error estimates in the balanced norm

(5) ol = &2 folzm + ol mr 2

As this norm has a different weighting of the H"-seminorm, the layer function is
measured of order O (1) as well as the non-layer components of the solution — the
norm is balanced.

For higher order equations (m > 2), even in 1d nothing is known concerning
estimates in the balanced norm for the Galerkin finite element method. The only
exception is [2], where a fourth-order problem is discretised with a mixed finite
element method.

The outline of this paper is as follows. In Section 2 we present a new idea to
derive balanced error estimates for second order problems, improving the result
in [11]. In Section 3 we generalise the idea from Section 2 to higher order problems
in detail for the 1d case and give guiding principles for the (very technical) 2d case.

Notation: We denote by (-,-)p the L?-scalar product on D and by ||-|| 12(p) the
associated L?-norm over D. Furthermore by ||+ (py, ||| gx(py and [|-|ly . (p) we
denote the Sobolev-seminorm and norms in H*¥(D) = W*2(D) and W* (D). In
the case of D = ) we may skip the reference to the domain.

2. An improved estimate in a balanced norm for second order problems
Let us consider the case m = k = 1 and the discretization of
(6) e2(Vu, Vo) + (cu,v) = (f,v) Yo eV = Hj(Q),

where ¢ > v > 0 by linear finite elements on S-type meshes [10]. In [11] it was
proved (on a Shishkin mesh)

(7) [ = u |, S N1 N)*/2 4 N2,

It was an open question to remove the factor (In N')'/2 from (6). Here we modify
the technique from [11] to realise that goal and use the same technique in Section
3 for higher order problems.

In [11] the L2-projection mu € VN from u was used instead of the Lagrange
interpolant. Based on

N

U—Uu :u—ﬂ'u—l—wu—uN

we estimated for constant ¢ the discrete error 7u — u” starting from:

®)  lmu — ||| £ 190 —u™) 2 + e lru— w7,
= X(V(ru —u), V(ru — u™)) + ¢ (mu — u, mu — u').

With (mu — u, &) = 0 for £ € VY| the last term vanishes and the problem was to
estimate |V (7mu — u)||r2. The use of the global projection leads to difficulties, espe-
cially in 2D: it is known that the L? projection is not on every mesh L? stable, and
there are examples which show that for the WP stability restrictions on the mesh
are necessary even in the one-dimensional case [1,7]. Fortunately, on tensor product
meshes like our S-type meshes (and their triangular versions) the L2-projection is



