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Abstract. In this paper, we propose some effective one- and two-level domain decom-
position preconditioners for elastic crack problems modeled by extended finite ele-
ment method. To construct the preconditioners, the physical domain is decomposed
into the “crack tip” subdomain, which contains all the degrees of freedom (dofs) of the
branch enrichment functions, and the “regular” subdomains, which contain the stan-
dard dofs and the dofs of the Heaviside enrichment function. In the one-level additive
Schwarz and restricted additive Schwarz preconditioners, the “crack tip” subproblem
is solved directly and the “regular” subproblems are solved by some inexact solvers,
such as ILU. In the two-level domain decomposition preconditioners, traditional inter-
polations between the coarse and the fine meshes destroy the good convergence prop-
erty. Therefore, we propose an unconventional approach in which the coarse mesh
is exactly the same as the fine mesh along the crack line, and adopt the technique of
a non-matching grid interpolation between the fine and the coarse meshes. Numeri-
cal experiments demonstrate the effectiveness of the two-level domain decomposition
preconditioners applied to elastic crack problems.
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1 Introduction

The extended finite element method (XFEM) proposed in 1999 [1,2,11] is a versatile tech-
nique for the computation of problems with discontinuities, singularities and localized
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deformations, etc. If the standard finite element method (FEM) is used for these prob-
lems, one often needs to use special meshes whose element edges coincide with the crack
surface and nodes be placed on each side of the crack to allow material separations along
the crack line. The construction of such meshes is quite difficult, in general. More-
over, mesh refinement is often needed in order to achieve optimal convergence, which
increases the dofs remarkably. In contrast, in XFEM, the mesh is independent of the
crack surface, which means structured meshes can be adopted. Furthermore, sometimes
optimal convergence can be obtained by introducing a small number of additional basis
functions into the approximation. These advantages of XFEM are particularly important
for the modeling of materials with discontinuities.

Although XFEM is an attractive technique for modeling cracks, the algebraic system
arising from XFEM is very ill-conditioned, see [3, 4]. For example, consider the linear
elasticity problem, the condition number of the stiffness matrix in XFEM is O(h−4) (h is
the mesh size), even if a single, non-polynomial enrichment function is used, while the
condition number of the stiffness matrix in FEM is onlyO(h−2). Therefore, robust solvers
are needed in XFEM. One way to reduce the condition number is to modify the enrich-
ment functions. A stable generalized FEM (SGFEM) is proposed for one-dimensional
problems in [3, 4]. It shows that SGFEM is optimally convergent and has no blending el-
ements, and the condition number is not worse than that of FEM. However, this idea can
not be generalized to two-dimensional problems directly. In [14], the computational accu-
racy and the condition number of SGFEM are investigated for two-dimensional fracture
mechanics problems. By adopting modified enrichment functions and linear Heaviside
enrichments, this SGFEM yields accurate result and as the same time not deteriorating
the condition number. Unfortunately, the condition number of this SGFEM depends on
the location of the crack, and it is not really stable; see [19]. Using a local orthogonalized
scheme, a strong SGFEM is constructed for the Poisson crack problem [19]. The optimal
convergence is proved mathematically, and numerical experiments show that it is indeed
stable. As a follow up to [19], a strong SGFEM for two-dimensional interface problems is
proposed in [6], and they also proved mathematically that the convergence is optimal and
the stiffness matrix is well-conditioned. As far as we know, there is no relevant literature
about the strong SGFEM for elastic crack problems.

The other way to reduce the condition number of XFEM is through preconditioning.
There are two types of XFEM, namely topological XFEM and geometric XFEM. For topo-
logical XFEM, there are several preconditioning techniques. In [12], a domain decompo-
sition method is employed, and the condition number of the preconditioned system is
close to that of FEM without any enrichments. In [10], a simple and efficient scheme is
proposed for XFEM which only includes the Heaviside enrichment function. A special
smoothed aggregation algebraic multigrid (AMG) preconditioner and an adaptive do-
main decomposition preconditioner are constructed in [15] and [18], respectively. In [5],
a multiplicative Schwarz preconditioner is used, where the physical domain is decom-
posed into a “cracked” subdomain and several “healthy” subdomains. The “cracked”
subproblem, which contains both the dofs of the Heaviside enrichment function and the


