
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2020-0194

Vol. 28, No. 5, pp. 2158-2179
November 2020

Learning to Discretize: Solving 1D Scalar Conservation

Laws via Deep Reinforcement Learning

Yufei Wang1,†, Ziju Shen2,†, Zichao Long3 and Bin Dong4,∗

1 Computer Science Department, Carnegie Mellon University, USA.
2 Academy for Advanced Interdisciplinary Studies, Peking University, P.R. China.
3 School of Mathematical Sciences, Peking University, P.R. China.
4 Beijing International Center for Mathematical Research, and Institute for Artificial
Intelligence, Peking University, P.R. China.

Received 30 September 2020; Accepted (in revised version) 11 October 2020

Abstract. Conservation laws are considered to be fundamental laws of nature. It has
broad applications in many fields, including physics, chemistry, biology, geology, and
engineering. Solving the differential equations associated with conservation laws is a
major branch in computational mathematics. The recent success of machine learning,
especially deep learning in areas such as computer vision and natural language pro-
cessing, has attracted a lot of attention from the community of computational mathe-
matics and inspired many intriguing works in combining machine learning with tra-
ditional methods. In this paper, we are the first to view numerical PDE solvers as an
MDP and to use (deep) RL to learn new solvers. As proof of concept, we focus on
1-dimensional scalar conservation laws. We deploy the machinery of deep reinforce-
ment learning to train a policy network that can decide on how the numerical solu-
tions should be approximated in a sequential and spatial-temporal adaptive manner.
We will show that the problem of solving conservation laws can be naturally viewed
as a sequential decision-making process, and the numerical schemes learned in such a
way can easily enforce long-term accuracy. Furthermore, the learned policy network
is carefully designed to determine a good local discrete approximation based on the
current state of the solution, which essentially makes the proposed method a meta-
learning approach. In other words, the proposed method is capable of learning how to
discretize for a given situation mimicking human experts. Finally, we will provide de-
tails on how the policy network is trained, how well it performs compared with some
state-of-the-art numerical solvers such as WENO schemes, and supervised learning
based approach L3D and PINN, and how well it generalizes.

AMS subject classifications: 65M06, 68T05, 49N90
Key words: Conservation laws, deep reinforcement learning, finite difference approximation,
WENO.

†The first two authors contributed equally.
∗Corresponding author. Email addresses: yufeiw2�andrew.mu.edu (Y. Wang), zjshen�pku.edu.n (Z. Shen),
zlong�pku.edu.n (Z. Long),dongbin�math.pku.edu.n (B. Dong)

http://www.global-sci.com/cicp 2158 c©2020 Global-Science Press



Y. Wang, Z. Shen, Z. Long and B. Dong / Commun. Comput. Phys., 28 (2020), pp. 2158-2179 2159

1 Introduction

Conservation laws are considered to be one of the fundamental laws of nature, and has
broad applications in multiple fields such as physics, chemistry, biology, geology, and
engineering. For example, Burgers equation, a very classic partial differential equation
(PDE) in conservation laws, has important applications in fluid mechanics, nonlinear
acoustics, gas dynamics, and traffic flow.

Solving the differential equations associated with conservation laws has been a major
branch of computational mathematics [18, 19], and a lot of effective methods have been
proposed, from classic methods such as the upwind scheme, the Lax-Friedrichs scheme,
to the advanced ones such as the ENO/WENO schemes [22, 30], the flux-limiter meth-
ods [14], and etc. In the past few decades, these traditional methods have been proven
successful in solving conservation laws. Nonetheless, the design of some of the high-end
methods heavily relies on expert knowledge and the coding of these methods can be a la-
borious process. To ease the usage and potentially improve these traditional algorithms,
machine learning, especially deep learning, has been recently incorporated into this field.
For example, the ENO scheme requires lots of ‘if/else’ logical judgments when used to
solve complicated system of equations or high-dimensional equations. This very much re-
sembles the old-fashioned expert systems. The recent trend in artificial intelligence (AI) is
to replace the expert systems by the so-called ‘connectionism’, e.g., deep neural networks,
which leads to the recent bloom of AI. Therefore, it is natural and potentially beneficial
to introduce deep learning in traditional numerical solvers of conservation laws.

1.1 Related works

In the last few years, neural networks (NNs) have been applied to solving ODEs/PDEs
or the associated inverse problems. These works can be roughly classified into two cate-
gories according to the way that the NN is used.

The first type of works propose to harness the representation power of NNs, and are
irrelevant to the numerical discretization based methods. For example, in the pioneering
works [2, 26, 27, 31, 34], NNs are used as new ansatz to approximate solutions of PDEs. It
was later generalized by [33] to allow randomness in the solution which is trained using
policy gradient. More recent works along this line include [6, 23, 25]. Besides, several
works have focused on using NNs to establish direct mappings between the parameters
of the PDEs (e.g. the coefficient field or the ground state energy) and their associated solu-
tions [9,16,17,21]. Furthermore, [4,13] proposed a method to solve very high-dimensional
PDEs by converting the PDE to a stochastic control problem and use NNs to approximate
the gradient of the solution.

The second type of works, which target at using NNs to learn new numerical schemes,
are closely related to our work. However, we note that these works mainly fall in the set-
ting of supervised learning (SL). For example, [7] proposed to integrate NNs into high-
order numerical solvers to predict artificial viscosity; [28] trained a multilayer perceptron


