Commun. Comput. Phys. Vol. 29, No. 2, pp. 606-627
doi: 10.4208/ cicp.OA-2019-0014 February 2021

Transitions States of Stochastic Chemical Kinetic
Systems

Jun Dul* and Di Liu!

! Department of Mathematics, Michigan State University, East Lansing, MI 48824,
USA.

Received 30 January 2019; Accepted (in revised version) 26 July 2019

Abstract. Based on Transition Path Theory (TPT) for Markov jump processes [1,2],
we develop a general approach for identifying and calculating Transition States (TS)
of stochastic chemical reacting networks. We first extend the concept of probability
current, originally defined on edges connecting different nodes in the configuration
space [2], to each sub-network. To locate sub-networks with maximal probability cur-
rent on the separatrix between reactive and non-reactive events, which will give the
Transition States of the reaction, constraint optimization is conducted. We further in-
troduce an alternative scheme to compute the transition pathways by topological sort-
ing, which is shown to be highly efficient through analysis.
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1 Introduction

Biochemical switches are nowadays widely found in gene regulatory networks and sig-
nal transduction pathways, in the form of networks of chemical reactions with multiple
steady states such that transitions between different metastable states can occur due to
stochastic fluctuations. From the modeling point of view, a biochemical network can be
described by a set of chemical reactions with certain topological structures and rate func-
tions, the latter of which, in the stochastic setting, provide transition probabilities be-
tween different states on fixed time horizons [3]. A hierarchy of models on different time
and space scales have been applied to the understanding of intra-cellular bio-chemical
systems. Graph based logic and kinetic models can be constructed from gene expres-
sion data through inductive or reverse engineering approaches, e.g., a variety of cluster-
ing algorithms have been used to group together genes with similar temporal expression
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patterns. A search for graph paths between two genes, for instance, would reveal interac-
tions and functionings of network components. Dynamical behaviors of gene regulatory
systems can be described using Ordinary and Partial Differential Equations (ODE/PDE),
where interactions are represented as functional and differential relations between con-
centrations of reacting species.

Stochastic effects in biochemical reacting networks can be incorporated by specifying
how probabilities of the system being in certain states evolve with time, which follows the
master equation. The stochastic processes governing the dynamics of a reacting system
therefore have the form of a Stochastic Differential Equation (SDE) driven by Brownian
or Poisson noises. The challenge is that it is especially difficult to analytically solve the
master equation involved in stochastic gene regulatory networks, which is often of high
dimensions [6]. Direct simulation of the SDE’s is also limited by the time scale separation
between the fast relaxation to local steady states and rare transitions between metastable
states.

A fundamental fact is that dynamics in nature works on very disparate time scales.
Atomic vibration occurs on femto- to pico-second time scales (107> to 10712 sec.), whereas
our daily lives are organized on the time scale of hours or days. Although many phys-
ical or biological processes occur on intermediate time scales, there are still huge gaps
between the different time scales. Consequently, most dynamic processes proceed in the
form of rare events. The system under consideration spends most of its time in localized
regions in configuration space. Only very rarely, it hops from one localized region to
another. These localized regions are called metastable states. Chemical reactions, con-
formation changes of molecules, nucleation events in a first order phase transition are all
examples of rare events, and so are many other dynamic processes in material science,
biology and chemistry.

Intuitively, one can think of the dynamics of a system as the process of navigation
over its potential or free energy landscape, under the action of small amplitude noise.
The metastable states are the local minima of the energy, or the basins of attraction of
the local minima, all called potential wells. Without the noise, the system will simply
be stuck at the local minima. Noise makes it possible to move between different local
minima. However, transition events are rare because the system has to overcome some
barriers. These barriers can either be of an energetic nature or an entropic nature. An
entropic barrier will arise for example when a diffusing particle tries to find a narrow
exit over a flat but vast landscape.

Our objective is not to keep track of the detailed dynamics of the system, but rather to
capture statistically the sequence of hops or transitions between different local minima or
metastable states. This means that effectively, the dynamics of the system is modeled by
a Markov chain: the metastable states are the states of the chain and the hopping rates are
the transition rates between different states. When designing algorithms for accelerating
molecular dynamics, our purpose is not to reproduce the detailed dynamics, but rather
to capture the effective dynamics of the Markov chain.



