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Abstract. This paper aims to design and analyze a solution method for a time-
dependent, nonlinear and thermally coupled eddy-current problem with a moving
conductor on hyper-velocity. We transform the problem into an equivalent coupled
system and use the nodal finite element discretization (in space) and the implicit Eu-
ler method (in time) for the coupled system. The resulting discrete coupled system is
decoupled and implicitly solved by a time step-length iteration method and the Picard
iteration. We numerically and theoretically prove that the finite element approxima-
tions have the optimal error estimates and both the two iteration methods possess the
linear convergence. For the proposed method, numerical stability and accuracy of the
approximations can be held even for coarser mesh partitions and larger time steps.
We also construct a preconditioner for the discrete operator defined by the linearized
bilinear form and show that this preconditioner is uniformly effective. Numerical ex-
periments are done to confirm the theoretical results and illustrate that the proposed
method is well behaved in large-scale numerical simulations.
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1 Introduction

Let Ω be a bounded and connected Lipschitz domain in three dimensions, and Ω be de-
composed into a union of two non-overlapping subdomains Ωc and Ωn. In applications,
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Ωc and Ωn denote a conducting area and a nonconducting area, respectively. The domain
Ωc is half-surrounded by the domain Ωn.

The behavior of an electromagnetic system obeys five basic integral laws: Amperes
Circuital Law, Faradays Induction Law, Law of Source Free Magnetic Flux, Gauss Law,
and Law of Charge Conservation [1]. They are described as the following:
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where H is the magnetic field, B is the magnetic flux density, E is the electric field, J is the
current density, ǫ is the permittivity and ρ is the volume charge density. Here D⊆Ω can
be chosen as any simply-connected subdomain of Ω, S can be chosen as any piecewise
smooth directed surface contained in Ω and n denotes the unit out normal vector.

Since (1.1d) can be deduced from (1.1a) and (1.1e) [1], we do not consider the law
(1.1d) (whose differential form is ∇·(ǫE)= ρ) in the considered model. In the underly-
ing applications, the displacement current can be neglected, i.e., ∂

∂t

∫

D ρdx ≡ 0 in (1.1e).
Then by virtue of the Gauss divergence theorem and Stokes theorem, the remaining four
laws (1.1a), (1.1b), (1.1c) and (1.1e) lead to the following differential form of Maxwell’s
equations defined in Ω (see [12]):
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∇×H= J in Ωc,

∇×H=0 in Ωn,

∇×E=− ∂B
∂t in Ωc,

∇·B=0 in Ω,

with

{

B=µH in Ω,

J=σ(T)E in Ωc.
(1.2)

The magnetic permeability µ is set to be a constant, and σ is the electrical conductivity
depending on the temperature T, which needs to be solved by a thermodynamic partial
differential equation (referring to (2.7) in Section 2).

The above coupled model is used to simulate multi-physical fields in the electrical
energy transducers, such as motors, transformers and the electromagnetic rail launcher
(ERL), which can convert electrical energy into mechanical energy and vice versa (see
[8, 19]). In applications, the field E may be expressed as the sum of two terms:

E=Ec+ϑ×B in Ωc, (1.3)


