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STABILITY OF HIGH ORDER FINITE DIFFERENCE SCHEMES

WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR

CONVECTION-DIFFUSION AND CONVECTION-DISPERSION

EQUATIONS

MEIQI TAN, JUAN CHENG*, AND CHI-WANG SHU

Abstract. The main purpose of this paper is to analyze the stability of the implicit-explicit
(IMEX) time-marching methods coupled with high order finite difference spatial discretization

for solving the linear convection-diffusion and convection-dispersion equations in one dimension.
Both Runge-Kutta and multistep IMEX methods are considered. Stability analysis is performed
on the above mentioned schemes with uniform meshes and periodic boundary condition by the aid
of the Fourier method. For the convection-diffusion equations, the result shows that the high order

IMEX finite difference schemes are subject to the time step restriction ∆t ≤ max{τ0, c∆x}, where
τ0 is a positive constant proportional to the diffusion coefficient and c is the Courant number. For
the convection-dispersion equations, we show that the IMEX finite difference schemes are stable
under the standard CFL condition ∆t ≤ c∆x. Numerical experiments are also given to verify the

main results.
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1. Introduction

In this paper, the stability property of the high order finite difference schemes
with certain implicit-explicit (IMEX) time-marching methods is studied for the
convection-diffusion and convection-dispersion equations respectively. For the spa-
tial derivative terms of these equations, we use a high order upwind biased finite
difference scheme, which is a prototype of the weighted essentially non-oscillatory
(WENO) schemes [12, 14], to discretize the convection term, a high order central
difference method to discretize the diffusion term, and a high order upwind biased
finite difference scheme to discretize the dispersion term.

The time derivative term for the convection-diffusion and convection-dispersion
equations should be discretized carefully. If explicit time-marching methods are
used, then the time step is dominated by the highest order derivative term, which
may be very small, resulting in excessive computational cost. For example, for the
convection-dispersion equations involving third order spatial derivatives which are
not convection-dominated, the explicit time discretization may suffer from a strict
time step restriction ∆t ∼ O(∆x3) for stability, where ∆t is the time step and
∆x is the spatial mesh size. If the fully implicit time-marching methods are used,
then the time step restriction may be relaxed, and usually unconditionally stable
such as A-stable schemes can be designed. However, in many practical applications
the lower order convection terms are often nonlinear, hence the implicit methods
may be much more expensive per time step than the explicit methods, because an
iterative solution of the nonlinear algebraic equations is needed.
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When it comes to such problems, a natural consideration is to treat different
derivative terms differently, that is, the higher order derivative terms are treated
implicitly, whereas the rest of the terms are treated explicitly. The IMEX time-
marching methods, which have been proposed and studied by many authors [1–7,
9, 10, 13, 16, 17], have considered such a strategy. This can not only alleviate the
stringent time step restriction, but also reduce the difficulty of solving the alge-
braic equations, especially when the higher order derivative terms are linear. Even
when the higher order derivative terms are nonlinear, the IMEX time-marching
methods might still show their advantages in obtaining a better algebraic system,
for example for diffusive higher order derivatives the algebraic system might have
some symmetry and positive definite properties, which can be easily solved by many
iterative methods.

For the convection-diffusion equations, there have been many studies in the lit-
erature on the IMEX methods. In [1], a pair of multistep IMEX time-marching
methods are constructed. Coupled with the traditional second order central differ-
ence method, the multistep IMEX finite difference schemes are shown to be stable
under the standard CFL condition ∆t ≤ c∆x, where c is the Courant number. How-
ever, most of them tend to have an undesirably small c, unless diffusion strongly
dominates and an appropriate backward differentiation formula is selected for the
diffusion term. In [9], the authors designed several stable multistep IMEX time dis-
cretizations, which are specially tailored for stability when coupled with the pseu-
dospectral method. These schemes are shown to be stable provided that the time
step and the spatial mesh size are bounded by two constants. Combined with the
local discontinuous Galerkin (LDG) method, a variety of IMEX schemes [16,17], in-
cluding Runge-Kutta type and multistep type IMEX schemes, have been discussed.
These schemes are stable provided that the time step is upper-bounded by a pos-
itive constant τ0 which is proportional to d/ν2, where ν and d are the convection
and diffusion coefficients, respectively. However, when d is very small in comparison
with the spatial mesh size, τ0 is too small to be the true bound for stability. For
the above mentioned equations without the diffusion terms, the explicit scheme is
usually stable under the standard CFL condition. We could therefore reasonably
expect that the IMEX method for this convection-diffusion equation should also
be stable under the same CFL condition. The schemes in [18], where the explicit
part is treated by a strong-stability-preserving Runge-Kutta method [8], and the
implicit part is treated by an L-stable diagonally implicit Runge-Kutta method, are
also subject to the time step restriction ∆t ≤ τ0. They also face the problem that
τ0 is too small to be the true bound for stability when d is very small in comparison
with the spatial mesh size.

For the convection-dispersion equations, there are also some studies in the liter-
ature on the IMEX methods. In [6], some multistep IMEX time-marching methods
with the spectral spatial discretization for the KdV equation have been presented.
Coupled with the finite volume spatial discretization, some IMEX Runge-Kutta
methods are tested in the case of the KdV equation in [5]. These schemes are
shown to be stable under the standard CFL condition ∆t ≤ c∆x. In [10], the
IMEX method with the discontinuous Galerkin (DG) spatial discretization is pro-
posed for the KdV equation, where the stability analysis is not discussed.

If we summarize the stability conditions of the schemes mentioned above, we
could find that the explicit, implicit and IMEX schemes coupled with appropriate
spatial discretizations are subject to the time step restrictions shown in Table 1.
Notice that the specific choices of spatial discretizations may change the values of


