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Abstract. In this paper, we construct a robust adaptive central-upwind scheme on
unstructured triangular grids for two-dimensional shallow water equations with variable
density. The method is well-balanced, positivity-preserving, and oscillation free at the
curve where two types of fluid merge. The proposed approach is an extension of the
adaptive well-balanced, positivity-preserving scheme developed in Epshteyn and Nguyen
(arXiv preprint arXiv:2011.06143, 2020). In particular, to preserve “lake-at-rest” steady
states, we utilize the Riemann Solver with appropriately rotated coordinates to obtain
the point values in neighborhood of the fluid interface. In addition, to improve the effi-
ciency of an adaptive method in the multi-fluid flow, the curve of density discontinuity is
reconstructed by using the level set method and volume fraction method. To demonstrate
the accuracy, high-resolution, and efficiency of the new adaptive central-upwind scheme,
several challenging tests for Shallow water models with variable density are performed.

Key words. Shallow water equations with variable density, central-upwind scheme,
well-balanced and positivity-preserving scheme, adaptive algorithm, interface tracking,
Riemann solver, weak local residual error estimator, unstructured triangular grid.

1. Introduction

The main goal of this paper is to develop an adaptive well-balanced positivity-
preserving central-upwind scheme on triangular grids for shallow water equations
with variable density (SWEDs). The two-dimensional (2-D) system of SWEDs can
be written as,

wt + (hu)x + (hv)y = 0,(1a)

(hu)t +
(
hu2 +

g

2ρ0
h2ρ
)
x
+ (huv)y = − g

ρ0
hρBx,(1b)

(hv)t + (huv)x +
(
hv2 +

g

2ρ0
h2ρ
)
y
= − g

ρ0
hρBy,(1c)

(hρ)t + (huρ)x + (hvρ)y = 0,(1d)

where t is the time, x and y are spatial coordinates ((x, y) ∈ Ω), h(x, y, t) is the
water height, B(x, y) is the bottom topography, w(x, y, t) := h + B is the water
level, ρ(x, y, t) is the density, u(x, y, t) and v(x, y, t) are the x- and y-components of
the flow velocity, g is the constant gravitational acceleration, and ρ0 is the reference
density. The system (1a)–(1d) was proposed in [10, 36, 37, 15] as a variation of
the Saint-Venant equations to model multi-phase flows in estuaries or deep ocean
currents. The derivation of the system is based on hydrostatic approximation which
eliminates the variability in the z-direction. The design of robust and accurate
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numerical algorithms for computing the solutions of SWEDs system is an important
and challenging problem that has been extensively studied in the recent years.

A number of numerical schemes for balance laws have been introduced in recent
years, [28, 25, 21, 6, 27, 8, 7, 9, 24, 23, 3, 26, 4, 5, 40, 29]. Most of them utilize a
Riemann problem solver for the upwind evolution of the calculated solution. How-
ever, as discussed in [9], the eigensystem of the system (1a)–(1d) may be incomplete
due to the resonance phenomenon. Hence, it may be very difficult to design a reli-
able upwind scheme for the SWEDs. In our paper, we therefore use central-upwind
schemes which are Riemann-problem-solver free methods, [22, 25, 29]. Central-
upwind schemes have been referred to “black-box” solvers for general multidimen-
sional systems of hyperbolic systems of conservation laws. In our prior work [13], we
have derived a successful adaptive central-upwind method for Saint-Venant system
on triangular grids. We then adapt the developed adaptive scheme in [13] to the
new system (1a)–(1d).

Similar to the Saint-Venant system, a good method for SWEDs system should
preserve the non-negativity of h and ρ, which is called the positivity-preserving
property. In addition, the scheme must ensure a well-balanced property obtained
when the numerical method preserve “lake-at-rest” steady-state solutions. Other-
wise, the numerical method may lead to significant oscillations. Note that, the
system (1a)–(1d) admits the following two “lake-at-rest” steady-state solutions, [9]:

(2) w := h+B = max
{
C,B(x, y)

}
, C = Const, ρ = P ≡ Const, u ≡ v ≡ 0,

and

(3) B ≡ Const, h2ρ ≡ Const, u ≡ v ≡ 0.

Preserving the solution (3) is a big challenge for numerically solving the system
(1a)–(1d) since using the conventional central-upwind methods may not ensure the
variable h2ρ, so-called variable pressure, to be constant at the contact waves. It is
more difficult to prevent the density oscillation when working on the unstructured
triangular grids. Several numerical methods have been proposed for compressible
flows, see [46, 31, 9], but only a few efforts, see [9], can simultaneously ensure two
types of lake-at-rest states. Therefore, we consider the approach in [9] which is
derived to solve the shallow water model with horizontal temperature gradients on
rectangular meshes (the system in [9] has similar properties with the SWEDs). In
[9], the proposed second-order semi-discrete central-upwind scheme is capable of
preserving the ↩ařlake at rest ↩aś steady state (2) and (3) as well as the positivity
of the water depth and the temperature (the variable temperature is equivalent to
the variable density in our work). In particular, to preserve the second type of

↩ařlake at rest ↩aś steady state (3) and suppress the pressure oscillations across the
interface, an efficient interface tracking method is performed. The main idea of
the interface approach in [9] is to completely avoid to use the information from
the cells where two types of fluids are numerically mixed, so-called “mixed” cells
when evolving the solution in the neighborhood of the interface. The data in the

↩ařmixed ↩aś cells is replaced by the interpolated values that are calculated using
the reliable information from the nearby ↩ařsingle fluid ↩aś cells. Namely, the point
values in “mixed” cells are obtained by using the approximated solution of the 1-D
Riemann problems between the reliable ↩ařsingle fluid ↩aś cell averages. However, the
central-upwind method and the interface tracking in [9] are designed for structured
rectangular grids. In practice, one needs to deal with complicated geometries, where
the use of triangular grids could be advantageous or even unavoidable. Hence, in
this study, we extend the interface tracking method [9] from the rectangular grids
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