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Abstract. Thermal phase change problems are widespread in mathematics, nature,
and science. They are particularly useful in simulating the phenomena of melting
and solidification in materials science. In this paper we propose a novel class of ar-
bitrarily high-order and unconditionally energy stable schemes for a thermal phase
change model, which is the coupling of a heat transfer equation and a phase field equa-
tion. The unconditional energy stability and consistency error estimates are rigorously
proved for the proposed schemes. A detailed implementation demonstrates that the
proposed method requires only the solution of a system of linear elliptic equations at
each time step, with an efficient scheme of sufficient accuracy to calculate the solution
at the first step. It is observed from the comparison with the classical explicit Runge-
Kutta method that the new schemes allow to use larger time steps. Adaptive time step
size strategies can be applied to further benefit from this unconditional stability. Nu-
merical experiments are presented to verify the theoretical claims and to illustrate the
accuracy and effectiveness of our method.
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1 Introduction

We can model a large class of physical problems with various gradient flows which share
the common ground of being a dissipative system. Examples of these dissipative systems
include Allen-Cahn equation [3], Cahn-Hilliard equation [12], interface dynamics [4, 72],
dendritic crystal growth models [40, 41, 43, 44, 68, 76], thin film models [27, 49, 60], liquid
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crystal models [26, 42, 71], etc. These models all agree with the second law of thermody-
namics.

In the past few decades, many efficient and accurate energy stable schemes have been
proposed for gradient flow models or dissipative systems. Some popular approaches
include the fully implicit methods [19, 24, 25], which require that one solves a coupled
system of nonlinear equations in each time step. If one chooses the time step for these
schemes to be too large, the nonlinear equations have multiple solutions. Moreover, it
has been shown in [59] that only a small set of fully implicit schemes are uncondition-
ally energy stable. Eyre [22] applied a new semi-implicit method named convex split-
ting approach which was first introduced in [21] to resolve the problems associated with
both the stiffness and solvability. It splits the nonlinear terms of free energy into the
subtraction of two convex functions, and leads to unconditionally energy stable for a
large class of gradient flows but requires solving a convex minimization problem at each
time step. Another disadvantage is that there does not exist general functional splitting
leading to stable schemes of higher order, and it is only possible to design second-order
convex-splitting schemes case-by-case [7, 51, 60, 61]. In addition to the convex splitting
method, the so-called stabilized linearly implicit approach [54, 65, 78] is widely used,
which consists in adding an artificial stabilization term to balance the explicit treatment
of the nonlinear term. The advantage of the stabilization method is its efficiency and
simplicity, since it only requires solving Poisson systems with constant coefficients at
each time step [72]. However, it appears that the unconditionally energy stable stabilized
scheme is usually limited to first-order accuracy. An alternative is the exponential time
discretization (ETD) method [14, 16, 17, 39, 63], which can lead to unconditionally energy
stable schemes by using polynomial interpolations for the nonlinear terms, but we still
have yet to obtain theoretical proofs of the energy stability properties of the higher-order
ETD schemes.

Recently, the invariant energy quadratization (IEQ), was proposed in a number of
papers [28, 67–69, 75–77]. It’s a generalization of the method of Lagrange multipliers or
of auxiliary variables originally presented in [6, 31]. One can construct linear, second-
order, unconditionally energy stable schemes for a class of gradient flows based on the
IEQ approach. Chen et al. [13] improved the accuracy and stability of the IEQ method by
introducing extra free parameters for phase-field models. As a remedy, Shen et al. [52,53]
extended the IEQ to the so-called scalar auxiliary variable (SAV) approach by introduc-
ing scalar auxiliary variables instead of auxiliary function variables. SAV method not
only keeps the advantages of the IEQ approach, but also yields more robust schemes
with fewer restrictions on the energy functionals. Thanks to the simplicity and efficiency,
SAV approach have been used to construct unconditionally energy stable schemes for a
large class of nonlinear systems, for instances, Navier-Stokes equations and related sys-
tems [45–47, 56, 70], time fractional PDEs [35], nonlinear Schrödinger equation [2, 5, 23],
gradient flows [34, 55, 73], etc. Several improved SAV schemes have also been devel-
oped, such as the multiple scalar auxiliary variable (MSAV) approach [15] for gradient
flows with disparate terms in the free energy, stabilized-scalar auxiliary variable method
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