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Abstract. With the remarkable empirical success of neural networks across diverse
scientific disciplines, rigorous error and convergence analysis are also being devel-
oped and enriched. However, there has been little theoretical work focusing on neu-
ral networks in solving interface problems. In this paper, we perform a convergence
analysis of physics-informed neural networks (PINNs) for solving second-order ellip-
tic interface problems. Specifically, we consider PINNs with domain decomposition
technologies and introduce gradient-enhanced strategies on the interfaces to deal with
boundary and interface jump conditions. It is shown that the neural network sequence
obtained by minimizing a Lipschitz regularized loss function converges to the unique
solution to the interface problem in H2 as the number of samples increases. Numerical
experiments are provided to demonstrate our theoretical analysis.
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1 Introduction

Deep learning in the form of deep neural networks (DNNs) has been effectively used in
diverse scientific disciplines beyond its traditional applications. In particular, thanks to
their potential nonlinear approximation power [1–3], DNNs are being exploited to con-
struct alternative approaches for solving partial differential equations (PDEs), e.g., the
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deep Ritz method (DRM) [4] and physics-informed neural networks (PINNs) [5]. The
key idea of these methods is to reformulate the solution to a PDE with a closed-form ex-
pression in the form of a neural network, the parameters of which are obtained by mini-
mizing a physics-informed loss given by the corresponding PDE. The original works on
the use of neural networks to solve PDEs were proposed in the 1990s [6, 7], and this idea
has recently been revisited with the renaissance of neural networks and the development
of deep learning techniques; see e.g., [8–12] and references therein.

Elliptic interface problems are a widespread class of problems in scientific computing
with many applications across diverse fields; see e.g. [13–16]. There are many accurate
and efficient numerical methods in the literature for interface problems, such as the finite
element method (FEM) [17,18], the discontinuous Galerkin method (DG) [19,20], the im-
mersed interface method (IIM) [21, 22], the immersed boundary method (IBM) [23], the
boundary element method (BEM) [14], and the Voronoi interface method (VIM) [24]. In
the last few decades, the numerical methods for solving interface problems have reached
a certain maturity and made satisfactory progress. However, the above-mentioned meth-
ods usually require either a body-fitted or unfitted mesh to treat the interface problems,
and the main difficulty lies in the body-fitted mesh generation or in the technique de-
signed to dissect the intersecting geometry of the interface and properly discretize inter-
face conditions. Interface problems are still challenging due to the low global regularity
and irregular geometry of interfaces.

In recent years, many efforts have been made to use neural networks to solve inter-
face problems since these methods are meshfree and can take advantage of deep learning
techniques such as automatic differentiation and GPU acceleration. In particular, neu-
ral network-based approaches exhibit notable advantages in treating high-dimensional
problems, inverse problems, and simultaneously solving parametric PDE problems that
involve learning the solution operator (operator learning), which issues also exist in in-
terface problems. In addition, the use of multiple neural networks based on the domain
decomposition method (DDM) has attracted increasing attention as they are more ac-
curate and flexible in dealing with the interface and have shown remarkable success in
various interface problems [25–28]. This idea is further studied from the numerical as-
pect in our previous work [28], where the proposed interfaced neural networks are able
to balance the interplay between different terms in the composite loss function and im-
prove the performance in terms of accuracy and robustness. The above-mentioned works
focus on obtaining empirical results, whereas we focus on theoretical aspects such as the
convergence of PINNs for solving interface problems in this paper.

Along with the remarkable empirical achievements of deep learning methods, rigor-
ous error and convergence analysis are also being developed and enriched. In previous
work [29], the Hölder continuity constant was used to obtain the generalization analysis
of PINNs in the case of linear second-order elliptic and parabolic type PDEs. [30,31] used
quadrature points in the formulation of the loss and carried out an a-posteriori-type gen-
eralization error analysis of PINNs for both forward and inverse problems. [32] studied
linear PDEs and proved both a priori and posterior estimates for PINNs and variational
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