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Abstract. Stochastic gradient Langevin dynamics (SGLD) is a standard sampling technique for uncertainty
estimation in Bayesian neural networks. Past methods have shown improved convergence by including a pre-
conditioning of SGLD based on RMSprop. This preconditioning serves to adapt to the local geometry of the
parameter space and improve the performance of deep neural networks. In this paper, we develop another
preconditioning technique to accelerate training and improve convergence by incorporating a recently devel-
oped batch normalization preconditioning (BNP), into our methods. BNP uses mini-batch statistics to improve
the conditioning of the Hessian of the loss function in traditional neural networks and thus improve conver-
gence. We will show that applying BNP to SGLD will improve the conditioning of the Fisher information
matrix, which improves the convergence. We present the results of this method on three experiments includ-
ing a simulation example, a contextual bandit example, and a residual network which show the improved
initial convergence provided by BNP, in addition to an improved condition number from this method.
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1 Introduction

Markov chain Monte Carlo (MCMC) provides a principled framework for simulating the
distribution of interest. During the simulation, the entire dataset is often used to compute
the energy or the gradient, which, however, is not scalable enough in big data problems.
To tackle this issue, stochastic gradient Langevin dynamics [23] proposes to inject ad-
ditional Gaussian noise to stochastic gradient descent and smoothly transitions into an
MCMC sampler as the step size goes to zero. The explorative feature of the sampler not
only captures uncertainty for reliable decision-making but also facilitates non-convex op-
timization to alleviate over-fitting [19,25]. Since then, many interesting stochastic gradient
Markov chain Monte Carlo (SG-MCMC) methods are proposed to accelerate the conver-
gence [2,4,6,14]. However, these sampling algorithms still suffer from a slow convergence
given morbid curvature information. To handle this issue, Girolami et al. [7] and Patterson
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and Teh [18] propose to adjust the Langevin algorithm on the Riemann manifold. De-
spite the correctness of the simulations, it is challenging to conduct the transformation in
high-dimensional problems. Motivated by the adaptive preconditioner as in root mean
squared propagation (RMSprop), the preconditioned SGLD algorithm (pSGLD) proposes
to accelerate SGLD through a diagonal approximation of the Fisher information to resolve
the scalability issue [13]. This uses gradient information to construct a preconditioner that
can be interpreted to have an adaptive step size, with a smaller step size for curved direc-
tions and a larger step size for flat directions. This combats the slow training related to
saddle points in neural networks. Other preconditioning methods have been investigated,
including dense approximations of the inverse Hessian, as in [1,21]. There have also been
approaches to use non-linear averaging methods to accelerate network convergence. He
et al. uses a truncated generalized conjugate residual method that uses symmetry of the
Hessian to improve convergence [9], and combines gradient descent ascent with Ander-
son mixing in generative adversarial networks, which was shown to improve adversarial
training [10].

Another approach to accelerate convergence is to incorporate batch normalization (BN)
layers into the network architecture [11]. BN uses mini-batch statistics to normalize hid-
den variables of a network and has been shown to decrease training times and improve
network regularization. BN and its connection to Bayesian neural networks have been
studied in [22], in particular, a network with BN can be interpreted as an approximate
Bayesian model. Batch normalization has also been successfully applied to Bayesian mod-
els as studied in [16] which shows that including BN layers does not affect the probabilistic
inference of variational methods. Batch normalization preconditioning is a technique that
also uses mini-batch statistics but does so by transforming a network’s trainable parame-
ters using a preconditioner [12]. This is done by applying a preconditioning transforma-
tion on the parameter gradients during training. This transformation has been shown to
improve the conditioning of the Hessian of the loss function which corresponds to a ma-
jor advantage of the BNP transformation, that is, improvement in the convergence of the
method. More importantly, BNP is a general framework that is applicable to different
neural network architectures and in different settings, such as Bayesian models.

In this paper, we develop BNP for Bayesian neural networks to be used as a sampling
method and examine its effects. We show that we can develop a similar preconditioning
technique for SGLD that further improves initial convergence by improving the condition
number of the Fisher information matrix. Additionally, we provide experimental results
on three different methods, each showing improvement in convergence over our com-
parative baselines. We also compute the condition number of the approximate empirical
Fisher information, which demonstrates the improvement in the condition number in our
method.

The paper is organized as follows. In Section 2 we provide background information on
stochastic gradient Langevin dynamics as well as a preconditioned version of SGLD. Sec-
tion 2.2 introduces the basics of a batch normalization architecture. In Section 3 we expand
upon a preconditioning method, batch normalization preconditioning, to a Bayesian set-
ting that improves the conditioning of the Fisher information matrix and Section 4 show-
cases the benefits of BNP applied to SLGD in three different experiments.



