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Abstract. Non-equilibrium hyperbolic traffic models can be derived as continuum
approximations of car-following models and in many cases the resulting continuum
models are non-conservative. This leads to numerical difficulties, which seem to have
discouraged further development of complex behavioral continuum models, which is
a significant research need.

In this paper, we develop a robust numerical scheme that solves hyperbolic traffic
flow models based on their non-conservative form. We develop a fifth-order alter-
native weighted essentially non-oscillatory (A-WENO) finite-difference scheme based
on the path-conservative central-upwind (PCCU) method for several non-equilibrium
traffic flow models. In order to treat the non-conservative product terms, we use a
path-conservative technique. To this end, we first apply the recently proposed second-
order finite-volume PCCU scheme to the traffic flow models, and then extend this
scheme to the fifth-order of accuracy via the finite-difference A-WENO framework.
The designed schemes are applied to three different traffic flow models and tested on
a number of challenging numerical examples. Both schemes produce quite accurate re-
sults though the resolution achieved by the fifth-order A-WENO scheme is higher. The
proposed scheme in this paper sets the stage for developing more robust and complex
continuum traffic flow models with respect to human psychological factors.
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1 Introduction

This paper is focused on the development of robust and highly accurate numerical meth-
ods for non-equilibrium continuum traffic flow models, as non-conservative systems of
hyperbolic PDEs.

Continuum models treat traffic flow as a compressible fluid, and study its behavior
using aggregated state variables (for instance, flow and density) and are useful for real-
world traffic regarding operation and control [48]. Numerous continuum models have
been developed over time to accommodate various empirical and behavioral aspects of
traffic flow (see [47] for a critical review), which can be categorized into two broad fami-
lies of equilibrium and non-equilibrium models.

Equilibrium models rely primarily on the differential forms of the mass conservation
principle and some explicit functional forms between the state-variables (that is, speed
and density). The most prominent example is the seminal Lighthill-Whitham-Richards
(LWR) model [40, 54], which for a section of homogeneous road without intersections,
can be presented as

ρt+(ρV)x =0, V=Ve(ρ), (1.1)

where x is the spatial variable, t is the time, ρ(x,t) is the density, and Ve(ρ) describes
traffic speed as a generic function of local traffic density. The standard LWR model treats
the multi-lane traffic as a single-pipe, assuming all vehicles and drivers have the same
properties. Over time, numerous extensions of the LWR model have been proposed to
incorporate various aspects such as multi-lane driving and lane-changing manoeuvres
(see, e.g., [15,16,25,29]), different vehicle types (see, e.g., [4,49,53,61,62,64]), and drivers’
non-local anticipation of traffic condition ahead (see, e.g., [5, 10, 11, 57]).

Regardless of their underlying rationales, all equilibrium models are derived from
the flow conservation principles, and thus, can always be presented in the form of the
system of balance laws:

Ut+F(U)x =S(U), (1.2)

where U are the state variables, F are the nonlinear fluxes, and S(U) are the source terms.
Therefore, equilibrium models are often solved using numerical methods for hyperbolic
conservation and balance laws; see, e.g., [20, 35, 44, 69].

Non-equilibrium models, on the other hand, use the same flow continuity equation
as in (1.1), but with the speed adapted as a dynamic process. The majority of non-
equilibrium models can be presented in the following generic form:{

ρt+(ρV)x =0,
Vt+VVx = f (ρ,V,ρx,Vx,···).


