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Abstract. Bulk-surface partial differential equations (BS-PDEs) are prevalent in many
applications such as cellular, developmental and plant biology as well as in engineer-
ing and material sciences. Novel numerical methods for BS-PDEs in three space di-
mensions (3D) are sparse. In this work, we present a bulk-surface virtual element
method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear
parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the
3D bulk is approximated with general polyhedra, whose outer faces constitute a flat
polygonal approximation of the surface. For this reason, the method is restricted to
the lowest order case where the geometric error is not dominant. The BS-VEM guar-
antees all the advantages of polyhedral methods such as easy mesh generation and
fast matrix assembly on general geometries. Such advantages are much more relevant
than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics
and general surface curvature, the method only relies on nodal values without need-
ing additional evaluations usually associated with the quadrature of general reaction
kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this
study retains optimal convergence of second order in space.
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1 Introduction

Bulk-surface partial differential equations (BS-PDEs) arise from a wide variety of real-life
problems. They describe many natural problems including, but are not limited to, the
formation of spatial patterning in developmental biology [46], cell polarisation in molec-
ular and cellular biology [18, 26, 33, 45, 50], fluid dynamics [17, 20, 44], the formation of
an appressorium by the infection of the fungus Magnaporthe grisea causing rice blast [52],
spine growth in sea urchins [43], root formation and food uptake in plant biology [5], and
so on. Given the complex nature of BS-PDEs, their numerical treatment is generally not
trivial, in particular in three space dimensions (3D). Hence, developing novel numerical
methods and constructing stable and accurate algorithms to approximate their numeri-
cal solutions becomes crucially important, given their rapid applications to areas such as
biomedical engineering, fluid dynamics, materials science, biology, cancer biology, image
processing, astrophysics and battery modeling, to mention just a few examples.

Given d ∈ N denoting the number of space dimensions, a bulk-surface reaction-
diffusion system (BS-RDS) comprises of m∈N reaction-diffusion equations (RDEs) posed
in the bulk domain Ω ⊂ Rd (d ≥ 2) coupled, through either linear or non-linear mixed
Robin-type boundary conditions, with n∈N surface RDEs posed on the manifold Γ:=∂Ω.
The generalised BS-RDS takes the following form:

u̇i−du,i∆ui =qi(u1,··· ,um), x∈Ω;

v̇j−dv,j∆Γvj+
m

∑
k=1

ηjk∇uk ·ν=rj(u1,··· ,um,v1,··· ,vn), x∈Γ;

∇ui ·ν= si(u1,··· ,um,v1,··· ,vn), x∈Γ,

(1.1)

for i=1,··· ,m, j=1,··· ,n and t∈ [0,T], where T>0 is the final time. In the above, u̇i and
v̇j denote partial time derivatives. The functions qi,rj,si are nonlinear reaction kinetics,
du,i,dv,j > 0 are the diffusion coefficients and ηjk > 0 are coupling coefficients fulfilling
∑n

j=1 ηjk=du,k for all k=1,··· ,m, which can be interpreted as a balance law across bulk and
surface, see [46]. In (1.1), ∆ and ∆Γ denote the Laplace and Laplace-Beltrami operators
respectively, while ν : Γ →Rd is the outward unit normal vector field on Γ (see [35] for
full definitions). The model comprises several time-dependent BS-PDE models currently
existing in the literature, see for example [33, 46, 51]. The BS-VEM builds substantially
on the virtual element method (VEM), which in turn, is an extension of the well-known
finite element method (FEM) for the numerical approximation of PDEs on flat [8] and 3D
domains [49] as well as on surfaces [38].

Several element-based numerical methods have been developed for the spatial dis-
cretisation of BS-PDEs; current-state-of-the-art methods existing in the literature include
classical finite elements [31, 42, 46, 47], cut finite elements [20], discontinuous Galerkin
methods [24], kernel collocation methods [23] and trace finite elements [41]. We seek
to contribute to this area by developing the bulk-surface virtual element method (BS-VEM)
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