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Abstract. This paper presents a fourth-order Cartesian grid based boundary integral
method (BIM) for heterogeneous interface problems in two and three dimensional
space, where the problem interfaces are irregular and can be explicitly given by para-
metric curves or implicitly defined by level set functions. The method reformulates the
governing equation with interface conditions into boundary integral equations (BIEs)
and reinterprets the involved integrals as solutions to some simple interface problems
in an extended regular region. Solution of the simple equivalent interface problems for
integral evaluation relies on a fourth-order finite difference method with an FFT-based
fast elliptic solver. The structure of the coefficient matrix is preserved even with the
existence of the interface. In the whole calculation process, analytical expressions of
Green’s functions are never determined, formulated or computed. This is the novelty
of the proposed kernel-free boundary integral (KFBI) method. Numerical experiments
in both two and three dimensions are shown to demonstrate the algorithm efficiency
and solution accuracy even for problems with a large diffusion coefficient ratio.
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1 Introduction

This paper concerns about high-order numerical solutions of elliptic interface problems
in two and three dimensional space. Typical examples of interface problem arise from
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contact discontinuities for immiscible multiphase fluids with different physical charac-
teristics [1–3] and other multiphase diffusion phenomena [4–7].

For interfaces with complex geometry, body-fitted mesh methods such as those based
on conventional finite element methods (FEMs) with standard basis functions [8–10] are
considered to be computationally expensive and time-consuming, especially for mov-
ing interface problems. As an alternative, embedded methods on Cartesian or adaptive
Cartesian grids that do not conform to the interface are preferred to some extent. Clearly,
Cartesian grid methods have some advantages over unstructured grid methods like eas-
ier grid generation and availability of fast elliptic solvers. Numerical applications on
this regard include the extended finite element method (XFEM) with enriched finite el-
ement space [11–13], the embedded boundary method with adaptive mesh refinement
(AMR) [14,15], the virtual node method with duplicated bilinear elements [16], the finite
difference methods (FDMs) with optimal convergence and many others.

This paper is focused on the Cartesian grid methods based on finite difference dis-
cretization. As the solution to the interface problem is discontinuous across the inter-
face, special treatment should be attached at irregular grid nodes to maintain the global
numerical accuracy. The immersed boundary method (IBM) describes the interaction
between the viscous incompressible fluid with the moving immersed boundaries by a
δ-function formulation and results in a first-order or formally second-order smeared so-
lution [17–19]. To preserve the jump conditions in contrast to the numerical smearing,
extensive sharp interface methods has been designed for this purpose. The immersed in-
terface method (IIM) gives a second-order finite difference scheme for variable coefficient
elliptic PDEs with discontinuous coefficients and singular source. The resulting system
by the original IIM is not symmetric positive definite [20, 21]. Some variants have been
developed to improve the numerical stability and speed up the algorithm efficiency, such
as the finite-element IIM [22], the explicit jump immersed interface method (EJIIM) [23]
and the decomposed immersed interface method [24].

Combined with the level set function which serves an indicator for the interface lo-
cation, the Ghost Fluid Method (GFM) implicitly imposes the interfacial jumps to pre-
serve discontinuities of the solution [25]. The GFM defines both real and ghost values
at grid nodes near the interface so that the standard one-phase discretization methods
can be naturally applied. The ghost values are regarded as extensions for real values
across the interface and constructed by constant or linear extrapolation with the orig-
inal GFM [1, 25]. In this case, direct discretization based on GFM for the variable co-
efficient Poisson equation yields a symmetric positive-definite linear system, allowing
the use of various fast iterative solvers such as preconditioned conjugate gradient (PCG)
method [25, 26]. Derivation for ghost values with extrapolations of higher degrees refers
to [2,27–31], where solution accuracy is improved correspondingly but system symmetry
is lost meanwhile.

The novelty of the GFM is of vital importance that jump conditions are incorporated
by adding a constant vector to the right hand side of the system, thereby maintaining the
coefficient matrix unchanged, compared to the case when the interface does not exist [31].


