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Abstract. We present a new family of fourth-order splitting methods with positive co-
efficients especially tailored for the time integration of linear parabolic problems and,
in particular, for the time dependent Schrödinger equation, both in real and imaginary
time. They are based on the use of a double commutator and a modified processor, and
are more efficient than other widely used schemes found in the literature. Moreover,
for certain potentials, they achieve order six. Several examples in one, two and three
dimensions clearly illustrate the computational advantages of the new schemes.
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1 Introduction

The eigenvalue problem for the stationary Schrödinger equation constitutes an important
part in the understanding of basic atomic and molecular phenomena. It is defined by
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(h̄=m=1)
Ĥϕj(x)=Ejϕj(x), j=0,1,2,··· ,

Ĥ= T̂+V̂(x)=−1
2

∆+V̂(x),
(1.1)

where V̂ is the potential energy operator and ∆ is the Laplacian, an unbounded differen-
tial operator. Since the Hamiltonian Ĥ is Hermitian, then its eigenvalues Ej are real, and
the corresponding eigenfunctions ϕj can be chosen to form a real orthonormal basis on
their domain. By an appropriate election of the origin of the potential we can guarantee
that V̂(x)≥0 in the region of interest, so that 0≤E0≤E1≤···. Given the time-dependent
Schrödinger equation

i
∂

∂t
ψ(x,t)= Ĥψ(x,t), ψ0(x)=ψ(x,0), (1.2)

if the initial wave function ψ0(x) is expanded in the orthonormal basis of eigenfunctions
ϕj,

ψ0(x)=∑
j≥0

cj ϕj(x), cj =
〈
ϕj(x)|ψ(x,0)

〉
,

where ⟨·|·⟩ is the usual L2-scalar product, then the solution is given by [22]

ψ(x,t)=e−itĤψ(x,0)=∑
j≥0

e−itEj cj ϕj(x) (1.3)

and, in particular, the norm of the solution is preserved for any value of t.
Very often, the so-called imaginary time propagation (ITP) method is the preferred

option for solving the eigenvalue problem (1.1) [3, 5, 19] as well as for carrying out path
integral simulations in condensed phase quantum systems [16]. By considering the time
transformation t=−iτ, Eq. (1.2) is transformed into

∂

∂τ
ψ(x,τ)=−Ĥψ(x,τ), ψ0(x)=ψ(x,0). (1.4)

In this case the solution reads

ψ(x,τ)=e−τĤψ(x,0)=∑
j≥0

e−τEj cj ϕj(x). (1.5)

Notice that, in contrast with (1.3), for sufficiently large τ one gets ψ(x,τ)→ e−τE0 c0ϕ0,
since the other exponentials decay more rapidly. In other words, any given wave func-
tion at τ = 0 in which c0 ̸= 0 converges towards the ground state solution when τ →∞.
Once an accurate approximation to ϕ0 is obtained, the associated eigenvalue E0 can be
easily obtained by computing E0 = ⟨ϕ0(x)| Ĥ|ϕ0(x)⟩. Other functions ϕj can also be ap-
proximated, e.g., by propagating different wave functions simultaneously in time [2].
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