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Abstract. In this article, we study the energy dissipation property of time-fractional
Allen–Cahn equation. On the continuous level, we propose an upper bound of energy
that decreases with respect to time and coincides with the original energy at t=0 and
as t tends to ∞. This upper bound can also be viewed as a nonlocal-in-time modified
energy which is the summation of the original energy and an accumulation term due
to the memory effect of time-fractional derivative. In particular, the decrease of the
modified energy indicates that the original energy indeed decays w.r.t. time in a small
neighborhood at t=0. We illustrate the theory mainly with the time-fractional Allen–
Cahn equation but it could also be applied to other time-fractional phase-field models
such as the Cahn–Hilliard equation. On the discrete level, the decreasing upper bound
of energy is useful for proving energy dissipation of numerical schemes. First-order L1
and second-order L2 schemes for the time-fractional Allen–Cahn equation have similar
decreasing modified energies, so that stability can be established. Some numerical
results are provided to illustrate the behavior of this modified energy and to verify our
theoretical results.
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1 Introduction

Phase-field models have various applications in diverse regions such as multiphase flow
[7, 46, 48, 56, 64], material sciences [4, 26, 30, 47], image processing and biology [6, 17, 40],
etc. Most phase-fields models are derived as gradient flows associating with some spe-
cific energy functional, such as the Ginzburg–Landau energy for Allen–Cahn equations
and Cahn–Hilliard equations, Swift–Hohenberg energy for phase-field crystal models.
Seeking numerical solutions of phase-field equations has attracted a lot of attentions
in the past decade, which could be a delicate task: intrinsic properties of the solution
shall be recovered on the discrete level (energy dissipation, maximum principle) and the
presence of small parameter ε > 0 can generate practical difficulties. There have been
plenty of numerical schemes for phase-field equations, including the convex-splitting
schemes [11, 18, 20, 62], the stabilization schemes [55, 63, 66], the implicit-explicit (IMEX)
schemes [32, 33, 59], the operator splitting methods [34, 35], the scalar auxiliary variable
(SAV) schemes [53, 54], and the exponential time differencing (ETD) schemes [15, 23].
Lately, numerical methods and analysis have also been carried out for time-fractional
models which take into account long-time memory effects [10, 28, 37, 38, 65].

Recently, the time-fractional phase-field (TFPF) equations have been considered in
different applications. For instance, phase-field framework has been successfully em-
ployed to describe the evolution of structural damage and fatigue [9], in which the dam-
age is described by a variable order time fractional derivative. In [41] , the TFPF models
account for the anomalously subdiffusive transport behavior in heterogeneous porous
materials. The coarsening rate exponents of TFPH equations have also been compu-
tationally studied and formally analyzed [10, 41, 58], which agrees with some unusual
exponents reported in physics and biology [5,31]. These problems are challenging due to
the existence of both nonlocality and nonlinearity. Since the TFPH equations are exten-
sions of phase-field equations, it is natural to extend the relevant intrinsic properties, i.e.,
the maximum principle and energy dissipation, to the TFPF equations, e.g., [16, 36, 44].

The Allen–Cahn (AC) model is a popular phase-field model with the governing equa-
tion

∂tu=γ(ε2∆u−F′(u)), (t,x)∈ (0,T)×Ω, (1.1)

where ε> 0 is the interface width, γ> 0 is the diffusion mobility constant, and F(u) is a
potential function. For example, a simple and popular choice is the double well potential

F(u)=
1
4

(u2−1)2. (1.2)

For other types of potential function, we refer to [13,14]. The energy functional of the AC
equation (1.5) is

E(t) :=
∫

Ω

Ç
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å
dx. (1.3)


