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Abstract. The present study develops implicit physical domain-based discontinu-
ous Galerkin (DG) methods for efficient scale-resolving simulations on mixed-curved
meshes. Implicit methods are essential to handle stiff systems in many scale-resolving
simulations of interests in computational science and engineering. The physical
domain-based DG method can achieve high-order accuracy using the optimal bases set
and preserve the required accuracy on non-affine meshes. When using the quadrature-
based DG method, these advantages are overshadowed by severe computational costs
on mixed-curved meshes, making implicit scale-resolving simulations unaffordable.
To address this issue, the quadrature-free direct reconstruction method (DRM) is ex-
tended to the implicit DG method. In this approach, the generalized reconstruction
approximates non-linear flux functions directly in the physical domain, making the
computing-intensive numerical integrations precomputable at a preprocessing step.
The DRM operator is applied to the residual computation in the matrix-free method.
The DRM operator can be further extended to the system matrix computation for the
matrix-explicit Krylov subspace method and preconditioning. Finally, the A-stable
Rosenbrock-type Runge–Kutta methods are adopted to achieve high-order accuracy
in time. Extensive verification and validation from the manufactured solution to im-
plicit large eddy simulations are conducted. The computed results confirm that the
proposed method significantly improves computational efficiency compared to the
quadrature-based method while accurately resolving detailed unsteady flow features
that are hardly captured by scale-modeled simulations.
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1 Introduction

For the last few decades, the development of high-order computational fluid dynamics
(CFD) methods has rapidly progressed, particularly based on finite element discretiza-
tion techniques, owing to their attractive features [1]. Finite element-based high-order
methods can achieve arbitrary high level of accuracy via local solution approximations
on irregularly unstructured compact stencils [2]. This compactness greatly simplifies the
message-passing process and enables high scalability on large-scale parallel computa-
tions [3, 4]. Compact stencils are also advantageous to complex mesh systems, leading
to greater flexibility in dealing with complex configurations. The finite element-based
high-order methods become more and more cost-competitive for a given level of accu-
racy as the approximation order increases, making them better suited for high-fidelity
scale-resolving flow simulations [5]. The high-rank tensor operations widely used in fi-
nite element-based high-order methods are computationally intensive and can take full
advantage of the high performance computing machines [6]. From this perspective, the
finite element-based high-order methods will be the focus of this paper.

In high-order methods, numerical solutions are approximated by high-degree poly-
nomials and represented by polynomial bases in each element. According to the basic for-
mulation, a few classes of high-order methods are available [7–10]. In the present study,
we focus on the physical domain-based modal discontinuous Galerkin (DG) method
[11,12]. This method can provide the optimal order of accuracy using the optimal number
of polynomial bases [13]. Sharing the same number of degrees of freedom in all elements
allows simple and fast memory access when implemented on a computer. Compared
to reference domain-based methods, it has no accuracy degradation on the meshes with
non-affine elements [13, 14]; thus, the designed order of accuracy can be achieved on
mixed-curved meshes. Using modal bases also enables further extensions to polyhedral
meshes and makes the mass matrix identity [11, 15].

Despite their excellent performance and simplicity, high-order explicit formulations
show a clear limitation in many scale-resolving simulations of practical applications be-
cause the allowable time-step size is too restrictive. In general, the CFL condition en-
forces ∆t∼O(∆x2) in parabolic systems, such as the Navier–Stokes equations, which
become very stiff when dealing with thin boundary layer meshes for high-Reynolds-
number flows. The more stringent step size, ∆t∼O(∆x2/k2) where k is a polynomial
degree, in high-order methods aggravates the situation. An even more stringent time
step has to be enforced to relax the numerical disturbances of the initial flow field. Typi-
cal examples are Reynolds-averaged Navier–Stokes (RANS) source terms and steep flow
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