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Abstract. In this paper, we derive the frozen Gaussian approximation (FGA) for com-
puting the solution to the Dirac equation in curved space in the semi-classical regime.
The latter equation is used in particular for modeling electronic scattering on strained
graphene surfaces. We present numerical comparisons of the Dirac solutions on curved
and flat spaces, illustrating the focusing effect of graphene surfaces, as well as quali-
tative comparisons with a tight-binding model. A CPU-time comparison shows that
FGA becomes more efficient than an IMEX pseudospectral method when the semiclas-
sical parameter is small.
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1 Introduction

In this paper, we are interested in computing the solution of a massless two-dimensional
Dirac equation in curved space in the low energy limit (semi-classical regime), model-
ing electron motions on strained graphene surfaces [5, 9, 22, 25, 26]. Some connections
with refractive optics can also be obtained through Evans’ model [13]. Mathematically,
the Dirac equation in curved space is a non-conservative first-order hyperbolic system.
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Although the Dirac equation under consideration is linear, it has non-constant (space-
dependent) coefficients and possesses, compared to the Dirac equation in flat space, ad-
ditional order-zero terms (corresponding physically to spin connections); see [14]. The
latter is, however, perturbative in the semi-classical regime.

The Frozen Gaussian Approximation (FGA) is one of the most accurate and efficient
methods for computing the solution to wave equations, including the Dirac equation,
in the semi-classical regime. FGA was first developed by Herman-Kluk (HK) [16] for
computing the solution to the Schrödinger equation in the semi-classical regime, and it
was mathematically analyzed in [27]. More recently, the HK-formalism was used and
analyzed to derive fast numerical solvers in the semi-classical regime for different classes
of partial differential equations: the Schrödinger equation [32], the classical wave equa-
tion [19,20] and general linear hyperbolic systems of conservation laws [21]. The analysis
of FGA for the Dirac equation in flat space was given in [7], and an alternative efficient
Gaussian beam method was proposed in [31] for solving the Dirac equation in flat space
in the semi-classical regime.

The objective of this work is to describe the trajectories of electrons on a given strained
graphene surface. To achieve this goal, we will proceed as follows:

• Establish the two-dimensional (2D) massless Dirac equation in curved space (S)
and in semi-classical regime.

• Solve this Dirac equation in curved space by FGA.

• Compute the classical or semi-classical electron trajectories thanks to the Hamilto-
nian flow used in FGA. In particular, we shall present focusing effects of strained
graphene.

Let us first discuss the interest in using FGA for the Dirac equation modeling strained
graphene surfaces. The most advanced models, beyond ab initio calculations (which
are not realistic for a large number of atoms), are based on density functional theory
(and Kohn-Sham equations). These models are very computationally complex, so that
for graphene, tight-binding models are usually preferred as they allow for far more effi-
cient computations, while still keeping a good modeling accuracy. Moreover, it is well-
known that interesting properties of 2D materials often occur at low energy; from the
effective Hamiltonian obtained by Bloch transform on the tight-binding operator [6, 17],
the expansion of the dispersion relation about the so-called Dirac points (zeros of effec-
tive Hamiltonian eigenvalues) allows to obtain a continuum theory-based massless 2D
Dirac equation, and with non-constant coefficients in the case of strained graphene). In
graphene, the distance between Carbon atoms is typically much smaller than the scale of
the deformation, so that the semi-classical regime (denoting ε as the small parameter) is
usually considered [24]. However, the direct numerical computation of the Dirac equa-
tion in the semi-classical regime requires mesh size typically in O(ε) or even smaller,
therefore the computational time is inversely proportional to ε on a fine grid, leading
to expensive or unaffordable computational cost. In addition, non-constant coefficients


