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Abstract. In this paper, we construct a two-dimensional third-order space-time con-
servation element and solution element (CESE) method and apply it to the magne-
tohydrodynamics (MHD) equations. This third-order CESE method preserves all the
favorable attributes of the original second-order CESE method, such as: (i) flux conser-
vation in space and time without using an approximated Riemann solver, (ii) genuine
multi-dimensional algorithm without dimensional splitting, (iii) the use of the most
compact mesh stencil, involving only the immediate neighboring cells surrounding
the cell where the solution at a new time step is sought, and (iv) an explicit, unified
space-time integration procedure without using a quadrature integration procedure.
In order to verify the accuracy and efficiency of the scheme, several 2D MHD test
problems are presented. The result of MHD smooth wave problem shows third-order
convergence of the scheme. The results of the other MHD test problems show that the
method can enhance the solution quality by comparing with the original second-order
CESE scheme.
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1 Introduction

The space-time conservation element and solution element (CESE) method was origi-
nally proposed by Chang and co-workers [6,7] for solving conservation laws. In contrast
to conventional finite volume method (FVM) and finite difference method (FDM), the
CESE method has several unique features. It treats space and time in a unified manner
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when imposing local and global space-time flux conservation. There is no need to employ
the reconstruction or Riemann solver. The space-time domain is divided into space-time
Solution Elements (SEs), in which the primary unknowns and the fluxes are discretized
and represented by simple smooth functions. The space-time domain is also divided into
non-overlapping space-time Conservation Elements (CEs), over which flux conservation
is enforced in both space and time. It has the most compact stencil. Only the immedi-
ate neighboring mesh cells of the solution point are involved in the computational algo-
rithm. It achieves the same accuracy in time and space with a fully discrete one-stage
formulation. Owing to its numerical accuracy and robustness, the CESE method has
been successfully extended and applied to compute Euler, e.g., [3, 4, 36], Navier-Stokes,
e.g., [10, 15, 27], and magnetohydrodynamic (MHD) equations, e.g., [13, 14, 22, 33].

However, the original CESE scheme [6, 7] cannot be directly applied in the viscous
flow and inviscid flow problems with shocks due to its non-dissipative property. To over-
come the shortcoming, Zhang et al. [36] proposed its dissipative extension for solving the
unsteady Euler equations. But it is sensitive to the local Courant Friedrichs Lewy (CFL)
number. To overcome this limitation, a Courant number insensitive (CNI) CESE scheme
is proposed to adjust the dissipation via the local CFL number [8, 30, 34, 35]. Later, by
introducing approximate Riemann solvers or other upwind techniques to compute the
flux vector at the interfaces between sub-CEs, Shen et al. [24, 26] and Shen and Wen [25]
proposed upwind CESE schemes for capturing contact discontinuities. Efforts have also
been made to design higher-order CESE schemes. Liu and Wang [20] developed an
arbitrary-order one-dimensional CESE scheme based on arbitrary Taylor expansions in
the solution elements. Chang [9] proposed a highly-stable high-order CESE method for
solving the one-dimensional Burgers equation. Then Bilyeu et al. [3, 4] extended Chang’s
work to solve a system of linear and non-linear hyperbolic partial differential equations
in one- and two-dimensions. Shen et al. [23] extended it to high-order versions includ-
ing third and fourth order for the Euler equation on hybrid grids in two-dimensions.
Yang et al. [33] extended the CESE MHD solver to a fourth-order version. However, the
fourth-order CESE MHD solver can only be applied to the rectangular grids in Cartesian
coordinate. All the boundaries of the CEs are parallel to the coordinate surfaces, and the
normal direction is along the coordinate axis.

Moreover, so far, there is no detailed derivation of the third-order accuracy CESE
method for MHD equations. In the present study, we extend the second-order CESE
method to third orders for 2D MHD equations and report detailed derivation. Moveover,
the third-order CESE scheme can be directly applied to the unstructured meshes. The
third-order CESE method preserves all the features of the original second-order CESE
method. It can provide more accurate solutions. For testing the accuracy, resolution,
and efficiency of the third-order CESE method, we simulate several 2D MHD benchmark
problems, such as smooth Alfvén wave problem, oblique shock tube problem, Orszag-
Tang vortex and rotor problem.

The paper is organized as follows. Section 2 illustrates the 2D MHD governing equa-
tions. Section 3 presents the CESE method for calculating the flow variables. Section 4


