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Abstract. We present an algorithm for the numerical solution of systems of fully non-
linear PDEs using stochastic coded branching trees. This approach covers functional
nonlinearities involving gradient terms of arbitrary orders, and it requires only a bound-
ary condition over space at a given terminal time T instead of Dirichlet or Neumann
boundary conditions at all times as in standard solvers. Its implementation relies on
Monte Carlo estimation, and uses neural networks that perform a meshfree functional
estimation on a space-time domain. The algorithm is applied to the numerical solu-
tion of the Navier-Stokes equation and is benchmarked to other implementations in
the cases of the Taylor-Green vortex and Arnold-Beltrami-Childress flow.
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1 Introduction

This paper is concerned with the numerical solution of systems of d+1 fully nonlinear
coupled parabolic partial differential equations (PDEs) and Poisson equations on [0,T]×
Rd, of the form

∂tui(t,x)+ν∆ui(t,x)+ fi
(
∂ᾱ1 u0(t,x),··· ,∂ᾱq u0(t,x),∂ᾱq+1 uβq+1(t,x),··· ,∂ᾱn uβn(t,x)

)
=0,

∆u0(t,x)= f0
(
∂ᾱq+1 uβq+1(t,x),··· ,∂ᾱn uβn(t,x)

)
,

ui(T,x)=ϕi(x), (t,x)=(t,x1,··· ,xd)∈ [0,T]×Rd, i=1,··· ,d,
(1.1)
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where q ∈ {0,1,··· ,n}, ∂tu(t,x) = ∂u(t,x)/∂t, ν > 0, ∆ = ∑d
i=1 ∂2/∂x2

i is the standard d-
dimensional Laplacian, 1≤β j≤d for q<j≤n, ᾱi=(αi

1,··· ,αi
d)∈Nd, i=0,1,··· ,n, fi(x1,··· ,xn)

and f0(xq+1,··· ,xn) are smooth functions of the derivatives

∂ᾱi u(t,x)=
∂αi

1

∂xαi
1

1

··· ∂αi
d

∂xαi
d

d

u(t,x1,··· ,xd), (x1,··· ,xd)∈Rd,

and (ϕi)i=1,···,d is a smooth terminal condition. We note that the problem (1.1) is posed
using the terminal time boundary condition ui(T,x)=ϕi(x) in (x1,··· ,xd)∈Rd, instead of
assuming Dirichlet and Neumann boundary conditions at all times as is usually the case
in the finite difference and mesh-based literature.

As is well known, standard numerical schemes for solving (1.1) by e.g. finite dif-
ferences or finite elements suffer from a high computational cost which typically grows
exponentially with the dimension d. This motivates the study of probabilistic represen-
tations of (1.1), which, combined with meshfree Monte Carlo approximation, can over-
come the curse of dimensionality. In addition, it is not clear how the standard numerical
schemes can be applied when boundary conditions are not available.

Probabilistic representations for the solutions of first and second order nonlinear
PDEs can be obtained by writing u(t,x) ∈R as u(t,x) = Yt,x

t , where (Yt,x
s )t≤s≤T is the

solution of first or second order backward stochastic differential equation (BSDE), see
[9, 13, 30, 35] for a deep learning implementation. See also [23] for the use of stochastic
branching processes for the probabilistic representation of solutions of the Navier-Stokes
equation.

Stochastic branching diffusion mechanisms [19, 27, 33] have also been applied to the
probabilistic representation of the solutions of nonlinear PDEs, see e.g. [14, 15] for the
case of polynomial first order gradient nonlinearities, and [11, 12, 16, 36] for finite dif-
ference schemes combined with Monte Carlo estimation for fully nonlinear PDEs with
gradients of order up to two. However, extending the above approaches to nonlineari-
ties in higher order derivatives involves technical difficulties linked to the integrability of
the Malliavin-type weights used in repeated integration by parts argument, see page 199
of [15].

In [29], a stochastic branching method that carries information on (possibly func-
tional) nonlinearities along a random tree has been introduced, with the aim of providing
Monte Carlo schemes for the numerical solution of fully nonlinear PDEs with gradients
of arbitrary orders on the real line. This method has been implemented on Rd in [28]
using a neural network approach to efficiently approximate the PDE solution u(t,x)∈R

over a bounded domain in [0,T]×Rd.

In this paper, we extend the approaches in [28, 29] to treat the case of systems of
fully nonlinear PDEs of the form (1.1), and we apply our algorithm to the incompressible


