
Journal of Computational Mathematics

Vol.41, No.6, 2023, 1137–1170.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2207-m2022-0058

STABLE AND ROBUST RECOVERY OF APPROXIMATELY
k-SPARSE SIGNALS WITH PARTIAL SUPPORT INFORMATION

IN NOISE SETTINGS VIA WEIGHTED ℓp (0 < p ≤ 1)
MINIMIZATION*

Biao Du and Anhua Wan1)

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

Email: dubiao@mail2.sysu.edu.cn, wananhua@mail.sysu.edu.cn

Abstract

In the existing work, the recovery of strictly k-sparse signals with partial support in-

formation was derived in the ℓ2 bounded noise setting. In this paper, the recovery of

approximately k-sparse signals with partial support information in two noise settings is in-

vestigated via weighted ℓp (0 < p ≤ 1) minimization method. The restricted isometry con-

stant (RIC) condition δtk < 1

pη
2
p
−1

+1

on the measurement matrix for some t ∈ [1+ 2−p

2+p
σ, 2]

is proved to be sufficient to guarantee the stable and robust recovery of signals under

sparsity defect in noisy cases. Herein, σ ∈ [0, 1] is a parameter related to the prior support

information of the original signal, and η ≥ 0 is determined by p, t and σ. The new results

not only improve the recent work in [17], but also include the optimal results by weighted

ℓ1 minimization or by standard ℓp minimization as special cases.
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1. Introduction

As a data acquisition paradigm, compressed sensing has been a very active research area

and has abundant applications [2,15,22]. Compressed sensing is particularly promising not only

in applications such as hyperspectral imaging where taking measurements is costly, but also in

applications such as medical and seismic imaging where the ambient dimension of the signal is

very large [18].

In standard compressed sensing theory, one observes

y = Ax+ z, (1.1)

where x = (x1, x2, . . . , xn)
T ∈ R

n is an unknown sparse signal, y ∈ R
m is the observed signal,

A ∈ R
m×n is a measurement matrix with m ≪ n, and z ∈ R

m denotes the noise in the

measurement. One of the central goals of compressed sensing is to recover the original high-

dimensional signal x based on the measurement matrix and the observed signal.

For signal recovery, the following noise settings

Bℓ2 (ǫ) :=
{

z ∈ R
m : ‖z‖2 ≤ ǫ

}

(1.2)
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and

BDS (ǫ) :=
{

z ∈ R
m :

∥

∥AT z
∥

∥

∞ ≤ ǫ
}

(1.3)

are of particular interest. Herein, ǫ ≥ 0 denotes some known margin. The ℓ2 bounded noise

setting (1.2) was considered for example in [14], and the DS noise setting (1.3) was motivated

by the Dantzig Selector procedure in [5].

Denote the support of x = (x1, x2, . . . , xn)
T as supp(x) = {i : xi 6= 0}. x is called k-sparse

if the number of nonzero components in x is k at most, i.e., ‖x‖0 = |supp(x)| ≤ k.

The constrained ℓp (0 < p ≤ 1) minimization method estimates the signal x by

x̂ = arg min
x∈Rn

{

‖x‖pp : y −Ax ∈ B
}

, (1.4)

where

‖x‖p =

(

n
∑

i=1

|xi|p
)

1
p

is the ℓp (quasi-)norm of x and B ⊆ R
m denotes some noise structure [21, 24, 28]. When

in particular p = 1, the ℓp minimization model (1.4) becomes the standard ℓ1 minimization

model [1–3].

The following restricted isometry property (RIP) is a commonly used framework for sparse

recovery.

Definition 1.1 ([4]). Suppose A ∈ R
m×n is a measurement matrix, k is an integer and

1 ≤ k ≤ n. For the measurement matrix A, the restricted isometry constant (RIC) of order k

is defined as the smallest number δk ≥ 0 such that for all k-sparse vectors x ∈ R
n,

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22 . (1.5)

More generally, when k is not an integer, δk is defined as δ⌈k⌉, where ⌈·⌉ denotes the ceiling

function [2].

In many practical applications, the original signal is not exactly k-sparse. As a consequence,

the stable recovery of approximately sparse signals in noisy settings is of significant interest,

and has been investigated under different sufficient RIC conditions by ℓp minimization model

(1.4) [23, 26–28]. When n ≤ 4k, under the assumption p ∈ (0, 3+2
√
2

2 (1 − δ2k)] for δ2k ∈ (0, 1),

Wen, Li and Zhu [26] proved the stable recovery of approximately k-sparse signals in the ℓ2
bounded noise case. For p ∈ (0, 1], Zhang and Li [28] derived the sharp condition

δ2k <
η

2− p− η
(1.6)

for the stable recovery of exactly k-sparse signals in noisy cases, where η ∈
(

1− p, 1− p
2

)

is the

unique positive solution of the equation

p

2
η

2
p + η − 1 +

p

2
= 0. (1.7)

In our previous work [8, 24], general condition

δtk < δ∗(p, t) :=
η

2− p

t− 1
− η

(1.8)


