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Abstract

We present Alikhanov linearized Galerkin methods for solving the nonlinear time frac-

tional Schrödinger equations. Unconditionally optimal estimates of the fully-discrete sche-

me are obtained by using the fractional time-spatial splitting argument. The convergence

results indicate that the error estimates hold without any spatial-temporal stepsize restric-

tions. Numerical experiments are done to verify the theoretical results.
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1. Introduction

We consider the Alikhanov finite element method (FEM) for solving the following nonlinear

time fractional Schrödinger equations (TFSEs) [29]:















iCDα
t u+∆u+ f

(

|u|2
)

u = 0, (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x, t), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

(1.1)

where i =
√
−1,Ω ∈ Rd, d = 1, 2, 3, and f ∈ C3(R) is a nonlinear function, u(x, t) is a complex-

valued function. Here CDα
t u denotes the Captuo fractional derivative, which is defined as

CDα
t u(x, t) =

∫ t

0

w1−α(t− s)
∂u(x, s)

∂s
ds,
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where wβ(t) = tβ−1/Γ(β) and Γ(·) is the common Gamma function. Fractional Schrödinger

equations were investigated extensively. For example, Laskin [16, 17] proposed the fractional

Schrödinger equations by using the Feynman path integrals instead of Lévy ones. In 2004,

Naber [29] pointed out that one could obtain a time fractional Schrödinger equation when non-

Markovian evolution was considered. In 2006, Xu and Guo [7] studied some physical evolutions

of fractional Schrödinger equation. Tofighi [32] considered the probability structure of TFSEs.

More details can be found in [1, 9, 18, 28, 30].

In the past several years, TFSEs were numerically investigated by using different algorithms,

including finite difference methods [5, 11, 14, 15, 26, 33], finite element methods [24], spectral

methods [3,8,35], local discontinuous Galerkin methods [34] and Krylov projection method [6]

and so on [2,10,12]. Most convergence results were obtained with certain time-step restrictions

dependent on the spatial mesh sizes. In order to remove such restrictions, Li et al. [21] intro-

duced the fractional temporal-spatial splitting argument and obtained unconditionally optimal

L2-error estimates for problem (1.1). The time-discretization in the paper is done by L1 scheme.

And the convergence order of the scheme is 2 − α in temporal direction if the exact solutions

satisfy u ∈ C2([0, T ];L2(Ω)). The regularity of the problems is not considered in the paper.

In this paper, we propose a linearized fully-discrete numerical scheme for solving problem

(1.1), taking the initial singularities into account. The temporal discretization is done by

applying the Alikhanov scheme on graded meshes and the extrapolation method. The spatial

discretization is done by using the r-degree Galerkin FEM. It is shown that the convergence

order in L2-norm of the fully-discrete scheme can be of 2 in the temporal direction and of

r + 1 in the spatial direction. Such error estimates hold without any spatial-temporal stepsize

restrictions. The key to the proof is the so-called temporal-spatial splitting argument, which

is firstly proposed by Li and Sun [19, 20]. This technique has a successful application in the

time-dependent problems [21–23, 37]. We introduce the approach in our proof and obtain the

unconditionally convergent results for the time fractional problems in the complex spaces.

The rest of this paper is organized as follows. In Section 2, Alikhanov linearized Galerkin

FEM is established for solving problem (1.1), and our main results are also presented. In

Section 3, a rigorous analysis of our results is obtained by applying discrete fractional Grönwall

type inequality. In Section 4, numerical examples are given to confirm our theoretical results.

Finally, some conclusions are drawn in Section 5.

Throughout this paper, Cν and Cf denote two positive constants, not always the same in

different occasions, which dependent on the given information but independent of temporal and

spatial stepsizes.

2. The Alikhanov Galerkin FEM

Following the standard FEM discretization [31], let Th be a subdivision of Ω into triangles

Tk in R1,R2 or tetrahedra in R3 and h = maxTK∈Th
{diam TK} be the mesh size. The

finite-dimensional subspace of H1
0 (Ω) is named Vh. It is comprised by continuous piecewise

polynomial {φj}Mj=1 whose order is r (r ≥ 1) on Th. Let τn = tn+1 − tn be time step. Denote

tn = T (n/N)δ, 0 ≤ n ≤ N, δ ≥ 1, tn−α/2 = (1−α/2)tn +(α/2)tn−1, where N is a given integer

and um = u(x, tm). For a set of functions {ωn}, we define

ωn,α =
(

1− α

2

)

ωn +
α

2
ωn−1, 1 ≤ n ≤ N,

ω̂n =
(

2− α

2

)

ωn−1 −
(

1− α

2

)

ωn−2, n ≥ 2.
(2.1)


