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Abstract. We study continuous data assimilation (CDA) applied to projection
and penalty methods for the Navier-Stokes (NS) equations. Penalty and pro-
jection methods are more efficient than consistent NS discretizations, however
are less accurate due to modeling error (penalty) and splitting error (projec-
tion). We show analytically and numerically that with measurement data and
properly chosen parameters, CDA can effectively remove these splitting and
modeling errors and provide long time optimally accurate solutions.
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1 Introduction

Data assimilation has become a critical tool to improve simulations of many phys-
ical phenomena, from climate science to weather prediction to environmental
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forecasting and beyond [17, 38, 40]. While there are many types of data assim-
ilation, one with perhaps the strongest mathematical foundation for use with
PDEs that predict physical behavior is called continuous data assimilation (CDA).
CDA was developed by Azouani, Olson, and Titi in 2014 [1], and has since been
successfully used on a wide variety of problems including Navier-Stokes equa-
tions [1], Benard convection [20], planetary geostrophic models [22], turbulence
[9, 13, 23, 42], Cahn-Hilliard [18] and many others. Many improvements to CDA
itself have also been made, through techniques for parameter recovery [10], pa-
rameter estimation [11, 21, 44, 45, 48] sensitivity analysis with CDA [14], numeri-
cal analysis [18, 28, 30, 36, 37, 39, 51], and efficient nudging methods [51], to name
just a few. You can also find various extensions of CDA of Azouani, Olson, Titi
in [3–7, 12, 26].

CDA is typically applied in the following manner. Suppose the following PDE
is the correct model for a particular physical phenomenon with solution u(x,t):

ut+F(u)= f ,

u(x,t)|∂Ω =0,

u(x,0)=u0(x).

Suppose further that part of the true solution is known from measurements or ob-
servables, so that IH(u) is known at all times, with IH representing an appropriate
interpolant with max point spacing H. Then the CDA model takes the form

vt+F(v)+µIH(v−u)= f ,

v(x,t)|∂Ω =0,

v(x,0)=v0(x),

where µ>0 is a user selected nudging parameter. For many such systems, given
enough measurement values it can be proven that the solution v is long time
accurate regardless of the accuracy of the initial condition v0 (often CDA anal-
yses assume v0 = 0 6= u0). In numerical analyses, accuracy results of CDA en-
hanced discretizations can often avoid error growth in time since application of
the Gronwall inequality can be avoided, leading to long time optimal accuracy
results [27, 28, 51].

The purpose of this paper is to study CDA together with two commonly used
discretizations of the Navier-Stokes equations (NSE), the projection method and
the penalty method. The projection method is a classical splitting method for the
NSE developed independently by Chorin and Temam [15, 60], and is based on
a Hodge decomposition. The penalty method removes the divergence constraint
but replaces it with a divergence penalty in the momentum equation. Both of


